Advertisement

Spin Determination of the LHC Higgs-Like Resonance

  • Jason Tsz Shing YueEmail author
Chapter
  • 254 Downloads
Part of the Springer Theses book series (Springer Theses)

Abstract

The Higgs discovery was initially made in the diboson modes \(h\rightarrow ZZ^*,WW^*,\gamma \gamma \).

Keywords

Higgs Discovery Landau-Yang Theorem Unitarity Violation Tree-level Unitarity Constraints Perturbative Unitarity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    J. Ellis, R. Fok, D.S. Hwang, V. Sanz, T. You, Distinguishing ‘Higgs’ spin hypotheses using \(\gamma \gamma \) and \(W W^*\) decays. Eur. Phys. J. C 73, 2488 (2013). arXiv:1210.5229
  2. 2.
    J. Ellis, V. Sanz, T. You, Associated production evidence against Higgs impostors and anomalous couplings. Eur. Phys. J. C 73, 2507 (2013). arXiv:1303.0208
  3. 3.
    J. Ellis, V. Sanz, T. You, Prima facie evidence against spin-two Higgs impostors. Phys. Lett. B 726, 244–250 (2013). arXiv:1211.3068
  4. 4.
    M.R. Buckley, M.J. Ramsey-Musolf, Diagnosing spin at the LHC via vector boson fusion. JHEP 09, 094 (2011). arXiv:1008.5151
  5. 5.
    A. De Rujula, J. Lykken, M. Pierini, C. Rogan, M. Spiropulu, Higgs look-alikes at the LHC. Phys. Rev. D 82, 013003 (2010). arXiv:1001.5300
  6. 6.
    U. De Sanctis, M. Fabbrichesi, A. Tonero, Telling the spin of the ‘Higgs boson’ at the LHC. Phys. Rev. D 84, 015013 (2011). arXiv:1103.1973
  7. 7.
    C. Englert, D. Goncalves, G. Nail, M. Spannowsky, The shape of spins. Phys. Rev. D 88, 013016 (2013). arXiv:1304.0033
  8. 8.
    P. Artoisenet et al., A framework for Higgs characterisation. JHEP 11, 043 (2013). arXiv:1306.6464
  9. 9.
    D. Boer, W.J. den Dunnen, C. Pisano, M. Schlegel, Determining the Higgs spin and parity in the diphoton decay channel. Phys. Rev. Lett. 111, 032002 (2013). arXiv:1304.2654
  10. 10.
    J. Frank, M. Rauch, D. Zeppenfeld, Spin-2 resonances in vector-boson-fusion processes at next-to-leading order QCD. Phys. Rev. D 87, 055020 (2013). arXiv:1211.3658
  11. 11.
    J. Frank, Higgs spin determination and unitarity of vector-boson scattering at the LHC. Ph.D. thesis, Karlsruhe Institute Technology, 2014Google Scholar
  12. 12.
    J. Frank, M. Rauch, D. Zeppenfeld, Higgs spin determination in the WW channel and beyond. Eur. Phys. J. C 74, 2918 (2014). arXiv:1305.1883
  13. 13.
    A. Menon, T. Modak, D. Sahoo, R. Sinha, H.-Y. Cheng, Inferring the nature of the boson at 125–126 GeV. Phys. Rev. D 89, 095021 (2014). arXiv:1301.5404
  14. 14.
    T. Modak, D. Sahoo, R. Sinha, H.-Y. Cheng, T.-C. Yuan, Disentangling the Spin-Parity of a resonance via the gold-plated decay mode. arXiv:1408.5665
  15. 15.
    J. Ellis, D.S. Hwang, V. Sanz, T. You, A fast track towards the ‘Higgs’ spin and parity. JHEP 11, 134 (2012). arXiv:1208.6002
  16. 16.
    C. Englert, D. Goncalves-Netto, K. Mawatari, T. Plehn, Higgs quantum numbers in weak boson fusion. JHEP 01, 148 (2013). arXiv:1212.0843
  17. 17.
    S.Y. Choi, D.J. Miller, M.M. Muhlleitner, P.M. Zerwas, Identifying the Higgs spin and parity in decays to Z pairs. Phys. Lett. B 553, 61–71 (2003). arXiv:hep-ph/0210077
  18. 18.
    G. Kramer, T.F. Walsh, Quasi two body \(e^+ e^-\) annihilation. Z. Phys. 263, 361–386 (1973)CrossRefADSGoogle Scholar
  19. 19.
    Y. Gao, A.V. Gritsan, Z. Guo, K. Melnikov, M. Schulze, N.V. Tran, Spin determination of single-produced resonances at hadron colliders. Phys. Rev. D 81, 075022 (2010). arXiv:1001.3396
  20. 20.
    S. Bolognesi, Y. Gao, A.V. Gritsan, K. Melnikov, M. Schulze, N.V. Tran et al., On the spin and parity of a single-produced resonance at the LHC. Phys. Rev. D 86, 095031 (2012). arXiv:1208.4018
  21. 21.
    F. Maltoni, K. Mawatari, M. Zaro, Higgs characterisation via vector-boson fusion and associated production: NLO and parton-shower effects. Eur. Phys. J. C 74, 2710 (2014). arXiv:1311.1829
  22. 22.
    F. Demartin, F. Maltoni, K. Mawatari, B. Page, M. Zaro, Higgs characterisation at NLO in QCD: CP properties of the top-quark Yukawa interaction. Eur. Phys. J. C 74, 3065 (2014). arXiv:1407.5089
  23. 23.
    A. Kobakhidze, J. Yue, Excluding a generic spin-2 Higgs impostor. Phys. Lett. B 727, 456–460 (2013). arXiv:1310.0151
  24. 24.
    ATLAS collaboration, Study of the spin of the new boson with up to 25 fb\(^{-1}\) of ATLAS data, ATLAS-CONF-2013-040Google Scholar
  25. 25.
    CMS collaboration, Combination of standard model Higgs boson searches and measurements of the properties of the new boson with a mass near 125 GeV, CMS-PAS-HIG-13-005Google Scholar
  26. 26.
    L.D. Landau, On the angular momentum of a system of two photons. Dokl. Akad. Nauk Ser. Fiz. 60, 207–209 (1948)Google Scholar
  27. 27.
    C.-N. Yang, Selection rules for the dematerialization of a particle into two photons. Phys. Rev. 77, 242–245 (1950)CrossRefzbMATHADSGoogle Scholar
  28. 28.
    M. Cacciari, L. Del Debbio, J. R. Espinosa, A. D. Polosa, M. Testa, A note on the fate of the Landau-Yang theorem in non-Abelian gauge theories. arXiv:1509.07853
  29. 29.
    W. Beenakker, R. Kleiss, G. Lustermans, No Landau-Yang in QCD. arXiv:1508.07115
  30. 30.
    AYu. Ignatiev, G.C. Joshi, M. Matsuda, The search for the decay of Z boson into two gammas as a test of Bose statistics. Mod. Phys. Lett. A 11, 871–876 (1996). arXiv:hep-ph/9406398
  31. 31.
    S.N. Gninenko, AYu. Ignatiev, V.A. Matveev, Two photon decay of Z’ as a probe of Bose symmetry violation at the CERN LHC. Int. J. Mod. Phys. A 26, 4367–4385 (2011). arXiv:1102.5702
  32. 32.
    V. Pleitez, The angular momentum of two massless fields revisited. arXiv:1508.01394
  33. 33.
    J. P. Ralston, The need to fairly confront spin-1 for the new Higgs-like Particle. arXiv:1211.2288
  34. 34.
    S. Moretti, Variations on a Higgs theme. Phys. Rev. D 91, 014012 (2015). arXiv:1407.3511
  35. 35.
    A. Koenigstein, F. Giacosa, D. H. Rischke, Classical and quantum theory of the massive spin-two field. arXiv:1508.00110
  36. 36.
    K. Hinterbichler, Theoretical aspects of massive gravity. Rev. Mod. Phys. 84, 671–710 (2012). arXiv:1105.3735
  37. 37.
    C. de Rham, Living Rev. Rel. 17, 7 (2014). arXiv:1401.4173
  38. 38.
    S.F. Hassan, R.A. Rosen, Resolving the ghost problem in non-linear massive gravity. Phys. Rev. Lett. 108, 041101 (2012). arXiv:1106.3344
  39. 39.
    K. Hinterbichler, R.A. Rosen, Interacting spin-2 fields. JHEP 07, 047 (2012). arXiv:1203.5783
  40. 40.
    S. Folkerts, A. Pritzel, N. Wintergerst, On ghosts in theories of self-interacting massive spin-2 particles. arXiv:1107.3157
  41. 41.
    L.P.S. Singh, C.R. Hagen, Lagrangian formulation for arbitrary spin. 1. The boson case. Phys. Rev. D 9, 898–909 (1974)CrossRefADSGoogle Scholar
  42. 42.
    L.P.S. Singh, C.R. Hagen, Lagrangian formulation for arbitrary spin. 2. The fermion case. Phys. Rev. D 9, 910–920 (1974)CrossRefADSGoogle Scholar
  43. 43.
    G. Dvali, O. Pujolas, M. Redi, Non Pauli-Fierz massive gravitons. Phys. Rev. Lett. 101, 171303 (2008). arXiv:0806.3762
  44. 44.
    M. Fierz, W. Pauli, On relativistic wave equations for particles of arbitrary spin in an electromagnetic field. Proc. Roy. Soc. Lond. A 173, 211–232 (1939)Google Scholar
  45. 45.
    W. Pauli, M. Fierz, On Relativistic Field Equations of Particles With Arbitrary Spin in an Electromagnetic Field. Helv. Phys. Acta 12, 297–300 (1939)zbMATHGoogle Scholar
  46. 46.
    P. Van Nieuwenhuizen, On ghost-free tensor lagrangians and linearized gravitation. Nucl. Phys. B 60, 478–492 (1973)MathSciNetCrossRefADSGoogle Scholar
  47. 47.
    E.C.G. Stueckelberg, Interaction forces in electrodynamics and in the field theory of nuclear forces. Helv. Phys. Acta 11, 299–328 (1938)Google Scholar
  48. 48.
    R. Rahman, Higher Spin Theory - Part I. PoS ModaveVIII, 004 (2012). arXiv:1307.3199
  49. 49.
    A. Peach, Dissertation higher-spin gauge theories, Vasiliev theory and holography, Master’s thesis, Durham University, 2013Google Scholar
  50. 50.
    M. Porrati, R. Rahman, Intrinsic cutoff and acausality for massive spin 2 fields coupled to electromagnetism. Nucl. Phys. B 801, 174–186 (2008). arXiv:0801.2581
  51. 51.
    D.G. Boulware, S. Deser, Classical General Relativity Derived from Quantum Gravity. Annals Phys. 89, 193 (1975)MathSciNetCrossRefADSGoogle Scholar
  52. 52.
    M.D. Schwartz, Quantum Field Theory and the Standard Model, (Cambridge University Press, 2014)Google Scholar
  53. 53.
    N. Arkani-Hamed, H. Georgi, M.D. Schwartz, Effective field theory for massive gravitons and gravity in theory space. Annals Phys. 305, 96–118 (2003). arXiv:hep-th/0210184
  54. 54.
    S. Deser, Selfinteraction and gauge invariance. Gen. Rel. Grav. 1, 9–18 (1970). arXiv:gr-qc/0411023
  55. 55.
    R.M. Wald, Spin-2 fields and general covariance. Phys. Rev. D 33, 3613 (1986)MathSciNetCrossRefADSGoogle Scholar
  56. 56.
    T. Ortin, Gravity and Strings. Cambridge Monographs on Mathematical Physics (Cambridge University Press, 2015)Google Scholar
  57. 57.
    H. van Dam, M.J.G. Veltman, Massive and massless Yang-Mills and gravitational fields. Nucl. Phys. B 22, 397–411 (1970)CrossRefADSGoogle Scholar
  58. 58.
    V.I. Zakharov, Linearized gravitation theory and the graviton mass. JETP Lett. 12, 312 (1970)ADSGoogle Scholar
  59. 59.
    P. Creminelli, A. Nicolis, M. Papucci, E. Trincherini, Ghosts in massive gravity. JHEP 09, 003 (2005). arXiv:hep-th/0505147
  60. 60.
    A.I. Vainshtein, To the problem of nonvanishing gravitation mass. Phys. Lett. B 39, 393–394 (1972)CrossRefADSGoogle Scholar
  61. 61.
    D.G. Boulware, S. Deser, Can gravitation have a finite range? Phys. Rev. D 6, 3368–3382 (1972)CrossRefADSGoogle Scholar
  62. 62.
    C. de Rham, G. Gabadadze, Generalization of the Fierz-Pauli action. Phys. Rev. D 82, 044020 (2010). arXiv:1007.0443
  63. 63.
    C. de Rham, G. Gabadadze, A.J. Tolley, Resummation of massive gravity. Phys. Rev. Lett. 106, 231101 (2011). arXiv:1011.1232
  64. 64.
    C. de Rham, G. Gabadadze, Selftuned massive spin-2. Phys. Lett. B 693, 334–338 (2010). arXiv:1006.4367
  65. 65.
    S. Weinberg, E. Witten, Limits on massless particles. Phys. Lett. B 96, 59 (1980)MathSciNetCrossRefADSGoogle Scholar
  66. 66.
    S. Weinberg, Infrared photons and gravitons. Phys. Rev. 140, B516–B524 (1965)MathSciNetCrossRefADSGoogle Scholar
  67. 67.
    A. Jenkins, Constraints on emergent gravity. Int. J. Mod. Phys. D 18, 2249–2255 (2009). arXiv:0904.0453
  68. 68.
    N. D. Christensen, Stefanus, On tree-level unitarity in theories of massive spin-2 bosons. arXiv:1407.0438
  69. 69.
    T. Han, J.D. Lykken, R.-J. Zhang, On Kaluza-Klein states from large extra dimensions. Phys. Rev. D 59, 105006 (1999). arXiv:hep-ph/9811350
  70. 70.
    A.M. Badalian, L.P. Kok, M.I. Polikarpov, YuA Simonov, Resonances in coupled channels in nuclear and particle physics. Phys. Rept. 82, 31 (1982)CrossRefADSGoogle Scholar
  71. 71.
    W. Kilian, T. Ohl, J. Reuter, M. Sekulla, High-energy vector boson scattering after the Higgs discovery. Phys. Rev. D 91, 096007 (2015). arXiv:1408.6207
  72. 72.
    S.U. Chung, J. Brose, R. Hackmann, E. Klempt, S. Spanier, C. Strassburger, Partial wave analysis in K matrix formalism. Ann. Phys. 4, 404–430 (1995)CrossRefGoogle Scholar
  73. 73.
    U. Aydemir, M.M. Anber, J.F. Donoghue, Self-healing of unitarity in effective field theories and the onset of new physics. Phys. Rev. D 86, 014025 (2012). arXiv:1203.5153
  74. 74.
    A. Alboteanu, W. Kilian, J. Reuter, Resonances and unitarity in weak boson scattering at the LHC. JHEP 11, 010 (2008). arXiv:0806.4145
  75. 75.
    T. Han, D. Marfatia, R.-J. Zhang, Oblique parameter constraints on large extra dimensions. Phys. Rev. D 62, 125018 (2000). arXiv:hep-ph/0001320
  76. 76.
    M. Baak, M. Goebel, J. Haller, A. Hoecker, D. Kennedy, R. Kogler et al., The electroweak fit of the standard model after the discovery of a new boson at the LHC. Eur. Phys. J. C 72, 2205 (2012). arXiv:1209.2716
  77. 77.
    M. Baak, M. Goebel, J. Haller, A. Hoecker, D. Ludwig, K. Moenig et al., Updated status of the global electroweak fit and constraints on new physics. Eur. Phys. J. C 72, 2003 (2012). arXiv:1107.0975

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Department of PhysicsNational Taiwan Normal UniversityTaipeiTaiwan

Personalised recommendations