Advertisement

Introduction—Realisation of the EW Symmetry in the SM

  • Jason Tsz Shing YueEmail author
Chapter
  • 261 Downloads
Part of the Springer Theses book series (Springer Theses)

Abstract

In this chapter, we first construct the Higgsless SM as an effective field theory.

References

  1. 1.
    S. Weinberg, Phenomenological Lagrangians. Physica A 96, 327 (1979)CrossRefADSGoogle Scholar
  2. 2.
    T. Appelquist, J. Carazzone, Infrared singularities and massive fields. Phys. Rev. D 11, 2856 (1975)CrossRefADSGoogle Scholar
  3. 3.
    K. Aoki, Nondecoupling effects due to a dimensionful coupling. Phys. Lett. B 418, 125–133 (1998). arXiv: hep-ph/9709309
  4. 4.
    M.J. Herrero, E. Ruiz, Morales, nondecoupling effects of the SM Higgs boson to one loop. Nucl. Phys. B 437, 319–355 (1995). arXiv:hep-ph/9411207
  5. 5.
    S.R. Coleman, J. Wess, B. Zumino, Structure of phenomenological lagrangians. 1. Phys. Rev. 177, 2239–2247 (1969)CrossRefADSGoogle Scholar
  6. 6.
    C.G. Callan Jr., S.R. Coleman, J. Wess, B. Zumino, Structure of phenomenological lagrangians. 2. Phys. Rev. 177, 2247–2250 (1969)CrossRefADSGoogle Scholar
  7. 7.
    N.N. Bogoliubov, O.S. Parasiuk, On the multiplication of the causal function in the quantum theory of fields. Acta Math. 97, 227–266 (1957)MathSciNetCrossRefGoogle Scholar
  8. 8.
    K. Hepp, Proof of the Bogolyubov-Parasiuk theorem on renormalization. Commun. Math. Phys. 2, 301–326 (1966)CrossRefzbMATHADSGoogle Scholar
  9. 9.
    W. Zimmermann, Convergence of Bogolyubov’s method of renormalization in momentum space. Commun. Math. Phys. 15, 208–234 (1969)CrossRefzbMATHADSGoogle Scholar
  10. 10.
    J.H. Lowenstein, Convergence theorems for renormalized Feynman integrals with zero-mass propagators. Commun. Math. Phys. 47, 53–68 (1976)MathSciNetCrossRefzbMATHADSGoogle Scholar
  11. 11.
    F.J. Dyson, The Radiation theories of Tomonaga, Schwinger, and Feynman. Phys. Rev. 75, 486–502 (1949)MathSciNetCrossRefzbMATHADSGoogle Scholar
  12. 12.
    F.J. Dyson, The S matrix in quantum electrodynamics. Phys. Rev. 75, 1736–1755 (1949)MathSciNetCrossRefzbMATHADSGoogle Scholar
  13. 13.
    S. Weinberg, High-energy behavior in quantum field theory. Phys. Rev. 118, 838–849 (1960)MathSciNetCrossRefzbMATHADSGoogle Scholar
  14. 14.
    Y. Hahn, W. Zimmermann, An elementary proof of Dyson’s power counting theorem\(^*\). Commun. Math. Phys. 10, 330–342 (1968)MathSciNetzbMATHGoogle Scholar
  15. 15.
    B. Gripaios, Lectures on effective field theory. arXiv:1506.05039
  16. 16.
    J. Gomis, S. Weinberg, Are nonrenormalizable gauge theories renormalizable? Nucl. Phys. B 469, 473–487 (1996). arXiv:hep-th/9510087 MathSciNetCrossRefzbMATHADSGoogle Scholar
  17. 17.
    G.F. Chew, S-Matrix Theory of Strong Interactions (Benjamin, W.A, 1961)zbMATHGoogle Scholar
  18. 18.
    G.F. Chew, The Analytic S Matrix (Benjamin, W.A, 1966)Google Scholar
  19. 19.
    S. Weinberg, Effective field theory, past and future. PoS CD 09, 001 (2009). arXiv:0908.1964
  20. 20.
    M. Froissart, Asymptotic behavior and subtractions in the Mandelstam representation. Phys. Rev. 123, 1053–1057 (1961)CrossRefADSGoogle Scholar
  21. 21.
    A. Martin, S .M. Roy, Froissart bound on inelastic cross section without unknown constants. Phys. Rev. D 91, 076006 (2015). arXiv:1503.01261
  22. 22.
    G. Dvali, G.F. Giudice, C. Gomez, A. Kehagias, UV-completion by classicalization. JHEP 08, 108 (2011). arXiv:1010.1415 CrossRefzbMATHADSGoogle Scholar
  23. 23.
    G. Dvali, D. Pirtskhalava, Dynamics of unitarization by classicalization. Phys. Lett. B 699, 78–86 (2011). arXiv:1011.0114
  24. 24.
    U. Aydemir, M.M. Anber, J.F. Donoghue, Self-healing of unitarity in effective field theories and the onset of new physics. Phys. Rev. D 86, 014025 (2012). arXiv:1203.5153 CrossRefADSGoogle Scholar
  25. 25.
    C.H. Llewellyn, Smith, high-energy behavior and gauge symmetry. Phys. Lett. B 46, 233–236 (1973)CrossRefADSGoogle Scholar
  26. 26.
    J.M. Cornwall, D.N. Levin, G. Tiktopoulos, Derivation of gauge invariance from high-energy unitarity bounds on the s matrix. Phys. Rev. D 10, 1145 (1974)CrossRefADSGoogle Scholar
  27. 27.
    J.M. Cornwall, D.N. Levin, G. Tiktopoulos, Uniqueness of spontaneously broken gauge theories. Phys. Rev. Lett. 30, 1268–1270 (1973)CrossRefADSGoogle Scholar
  28. 28.
    F.A. Berends, R. Gastmans, On the high-energy behavior in quantum gravity. Nucl. Phys. B 88, 99–108 (1975)CrossRefADSGoogle Scholar
  29. 29.
    D. Albrecht, Weighted power counting and perturbative unitarity. Phys. Rev. D 83, 045029 (2011). arXiv:1012.2387 CrossRefADSGoogle Scholar
  30. 30.
    A. Wulzer, BSM lessons from the SM Higgs, in Proceedings, 2015 European Physical Society Conference on High Energy Physics (EPS-HEP 2015), (2015). arXiv:1510.05159
  31. 31.
    R. Kleiss, Derivation of the minimal standard model lagrangian. Subnucl. Ser. 28, 93–141 (1992)Google Scholar
  32. 32.
    J. Horejsi, Introduction to Electroweak Unification: Standard Model from Tree Unitarity. 1993Google Scholar
  33. 33.
    H. Weyl, Electron and gravitation. 1. (In German). Z. Phys. 56, 330–352 (1929)CrossRefzbMATHADSGoogle Scholar
  34. 34.
    M .D. Schwartz, Quantum Field Theory and the Standard Model (Cambridge University Press, Cambridge, 2014)Google Scholar
  35. 35.
    H. Fritzsch, M. Gell-Mann, H. Leutwyler, Advantages of the color octet gluon Picture. Phys. Lett. B 47, 365–368 (1973)CrossRefADSGoogle Scholar
  36. 36.
    H.D. Politzer, Reliable perturbative results for strong interactions? Phys. Rev. Lett. 30, 1346–1349 (1973)CrossRefADSGoogle Scholar
  37. 37.
    D.J. Gross, F. Wilczek, Ultraviolet behavior of nonabelian gauge theories. Phys. Rev. Lett. 30, 1343–1346 (1973)CrossRefADSGoogle Scholar
  38. 38.
    S. Weinberg, A model of leptons. Phys. Rev. Lett. 19, 1264–1266 (1967)CrossRefADSGoogle Scholar
  39. 39.
    A. Salam, Weak and electromagnetic interactions. Conf. Proc. C 680519, 367–377 (1968)Google Scholar
  40. 40.
    S.L. Glashow, Partial symmetries of weak interactions. Nucl. Phys. 22, 579–588 (1961)Google Scholar
  41. 41.
    Chin. Phys. Review of particle physics. C 38, 090001 (2014)Google Scholar
  42. 42.
    J. Goldstone, Field theories with superconductor solutions. Nuovo Cim. 19, 154–164 (1961)MathSciNetCrossRefzbMATHADSGoogle Scholar
  43. 43.
    J. Goldstone, A. Salam, S. Weinberg, Broken symmetries. Phys. Rev. 127, 965–970 (1962)MathSciNetCrossRefzbMATHADSGoogle Scholar
  44. 44.
    S . Pokorski, Gauge Field Theories (Cambridge University Press, Cambridge, 2005)zbMATHGoogle Scholar
  45. 45.
    J.S. Schwinger, A theory of the fundamental interactions. Ann. Phys. 2, 407–434 (1957)MathSciNetCrossRefzbMATHADSGoogle Scholar
  46. 46.
    T.D. Lee, C.-N. Yang, General partial wave analysis of the decay of a hyperon of spin 1/2. Phys. Rev. 108, 1645–1647 (1957)CrossRefADSGoogle Scholar
  47. 47.
    T.D. Lee, C.-N. Yang, Implications of the intermediate boson basis of the weak interactions: existence of a quartet of intermediate bosons and their dual isotopic spin transformation properties. Phys. Rev. 119, 1410–1419 (1960)MathSciNetCrossRefzbMATHADSGoogle Scholar
  48. 48.
    S.A. Bludman, On the universal Fermi interaction. Nuovo Cim. 9, 433–445 (1958)MathSciNetCrossRefADSGoogle Scholar
  49. 49.
    J. Leite, A model of the universal Fermi interaction. Nucl. Phys. 8, 234–236 (1958)CrossRefGoogle Scholar
  50. 50.
    A. Salam, J.C. Ward, Electromagnetic and weak interactions. Phys. Lett. 13, 168–171 (1964)MathSciNetCrossRefzbMATHADSGoogle Scholar
  51. 51.
    C.-N. Yang, R.L. Mills, Conservation of isotopic spin and isotopic gauge invariance. Phys. Rev. 96, 191–195 (1954)MathSciNetCrossRefzbMATHADSGoogle Scholar
  52. 52.
    R. Shaw, Unpublished. Ph.D. thesis, University of Cambridge, 1955Google Scholar
  53. 53.
    J.I. Friedman, V.L. Telegdi, Nuclear emulsion evidence for parity nonconservation in the decay chain \(\pi ^+ \rightarrow \mu ^+ \rightarrow e^+\). Phys. Rev. 106, 1290–1293 (1957)CrossRefADSGoogle Scholar
  54. 54.
    R.L. Garwin, L.M. Lederman, M. Weinrich, Observations of the failure of conservation of parity and charge conjugation in meson decays: the magnetic moment of the free muon. Phys. Rev. 105, 1415–1417 (1957)CrossRefADSGoogle Scholar
  55. 55.
    C.S. Wu, E. Ambler, R.W. Hayward, D.D. Hoppes, R.P. Hudson, Experimental test of parity conservation in beta decay. Phys. Rev. 105, 1413–1414 (1957)CrossRefADSGoogle Scholar
  56. 56.
    T.D. Lee, C.-N. Yang, Question of parity conservation in weak interactions. Phys. Rev. 104, 254–258 (1956)CrossRefADSGoogle Scholar
  57. 57.
    P.W. Higgs, Broken symmetries, massless particles and gauge fields. Phys. Lett. 12, 132–133 (1964)CrossRefADSGoogle Scholar
  58. 58.
    P.W. Higgs, Broken symmetries and the masses of gauge bosons. Phys. Rev. Lett. 13, 508–509 (1964)MathSciNetCrossRefADSGoogle Scholar
  59. 59.
    F. Englert, R. Brout, Broken symmetry and the mass of gauge vector mesons. Phys. Rev. Lett. 13, 321–323 (1964)MathSciNetCrossRefADSGoogle Scholar
  60. 60.
    T.W.B. Kibble, Symmetry breaking in nonabelian gauge theories. Phys. Rev. 155, 1554–1561 (1967)CrossRefADSGoogle Scholar
  61. 61.
    G.S. Guralnik, C.R. Hagen, T.W.B. Kibble, Global conservation laws and massless particles. Phys. Rev. Lett. 13, 585–587 (1964)CrossRefADSGoogle Scholar
  62. 62.
    P.W. Higgs, Spontaneous symmetry breakdown without massless bosons. Phys. Rev. 145, 1156–1163 (1966)MathSciNetCrossRefADSGoogle Scholar
  63. 63.
    A. Joseph, A.I. Solomon, Global and infinitesimal nonlinear chiral transformations. J. Math. Phys. 11, 748–761 (1970)MathSciNetCrossRefzbMATHADSGoogle Scholar
  64. 64.
    M. Gonzalez-Alonso, A. Greljo, G. Isidori, D. Marzocca, Pseudo-observables in Higgs decays. Eur. Phys. J. C 75, 128 (2015). arXiv:1412.6038
  65. 65.
    B. Grinstein, M. Trott, A Higgs-Higgs bound state due to new physics at a TeV. Phys. Rev. D 76, 073002 (2007). arXiv:0704.1505
  66. 66.
    F. Goertz, A. Papaefstathiou, L.L. Yang, J. Zurita, Higgs boson pair production in the D=6 extension of the SM. JHEP 04, 167 (2015). arXiv:1410.3471
  67. 67.
    R. Contino, C. Grojean, M. Moretti, F. Piccinini, R. Rattazzi, Strong double Higgs production at the LHC. JHEP 05, 089 (2010). arXiv:1002.1011
  68. 68.
    R. Contino, M. Ghezzi, M. Moretti, G. Panico, F. Piccinini, A. Wulzer, Anomalous couplings in double Higgs production. JHEP 08, 154 (2012). arXiv: 1205.5444
  69. 69.
    R. Alonso, M.B. Gavela, L. Merlo, S. Rigolin, J. Yepes, The effective chiral lagrangian for a light dynamical "Higgs particle". Phys. Lett. B 722, 330–335 (2013). arXiv:1212.3305
  70. 70.
    G. Buchalla, O. Catà, C. Krause, Complete electroweak chiral lagrangian with a light Higgs at NLO. Nucl. Phys. B 880, 552–573 (2014). arXiv:1307.5017
  71. 71.
    I. Brivio, T. Corbett, O.J.P. Éboli, M.B. Gavela, J. Gonzalez-Fraile, M.C. Gonzalez-Garcia et al., Disentangling a dynamical Higgs. JHEP 03, 024 (2014). arXiv: 1311.1823
  72. 72.
    I. Brivio, O.J.P. Éboli, M.B. Gavela, M.C. Gonzalez-Garcia, L. Merlo, S. Rigolin, Higgs ultraviolet softening. JHEP 12, 004 (2014). arXiv:1405.5412
  73. 73.
    C.E. Vayonakis, Born helicity amplitudes and cross-sections in non-abelian gauge theories. Lett. Nuovo Cim. 17, 383 (1976)CrossRefGoogle Scholar
  74. 74.
    B.W. Lee, C. Quigg, H.B. Thacker, Weak interactions at very high-energies: The role of the Higgs-boson mass. Phys. Rev. D 16, 1519 (1977)CrossRefADSGoogle Scholar
  75. 75.
    M.S. Chanowitz, M.K. Gaillard, The TeV physics of strongly interacting W’s and Z’s. Nucl. Phys. B 261, 379 (1985)CrossRefADSGoogle Scholar
  76. 76.
    G.J. Gounaris, R. Kogerler, H. Neufeld, Relationship between longitudinally polarized vector bosons and their unphysical scalar partners. Phys. Rev. D 34, 3257 (1986)CrossRefADSGoogle Scholar
  77. 77.
    A. Dobado, J.R. Pelaez, The equivalence theorem for chiral lagrangians. Phys. Lett. B 329, 469–478 (1994). arXiv:hep-ph/9404239
  78. 78.
    A. Dobado, J.R. Pelaez, On the equivalence theorem in the chiral perturbation theory description of the symmetry breaking sector of the standard model. Nucl. Phys. B 425, 110–136 (1994). arXiv:hep-ph/9401202
  79. 79.
    H.-J. He, Y.-P. Kuang, X.-Y. Li, Proof of the equivalence theorem in the chiral Lagrangian formalism. Phys. Lett. B 329, 278–284 (1994). arXiv: hep-ph/9403283
  80. 80.
    H.-J. He, Y.-P. Kuang, X.-Y. Li, Further investigation on the precise formulation of the equivalence theorem. Phys. Rev. D 49, 4842–4872 (1994)CrossRefADSGoogle Scholar
  81. 81.
    M.E. Peskin, T. Takeuchi, Estimation of oblique electroweak corrections. Phys. Rev. D 46, 381–409 (1992)CrossRefADSGoogle Scholar
  82. 82.
    M.E. Peskin, T. Takeuchi, A new constraint on a strongly interacting Higgs sector. Phys. Rev. Lett. 65, 964–967 (1990)CrossRefADSGoogle Scholar
  83. 83.
    H. Georgi, Effective field theory and electroweak radiative corrections. Nucl. Phys. B 363, 301–325 (1991)CrossRefADSGoogle Scholar
  84. 84.
    R. Barbieri, A. Pomarol, R. Rattazzi, A. Strumia, Electroweak symmetry breaking after LEP-1 and LEP-2. Nucl. Phys. B 703, 127–146 (2004). arXiv:hep-ph/0405040
  85. 85.
    M. de Vries, Strongly coupled models at the LHC. Ph.D. thesis, University of Hamburg, Department of Physics, 2014Google Scholar
  86. 86.
    K. Hally, H.E. Logan, T. Pilkington, Constraints on large scalar multiplets from perturbative unitarity. Phys. Rev. D 85, 095017 (2012). arXiv:1202.5073
  87. 87.
    K. Earl, K. Hartling, H.E. Logan, T. Pilkington, Constraining models with a large scalar multiplet. Phys. Rev. D 88, 015002 (2013). arXiv: 1303.1244
  88. 88.
    R . Alonso, E .E. Jenkins, A .V. Manohar, A geometric formulation of Higgs effective field theory: measuring the curvature of scalar field space. Phys. Lett. B 754, 335–342 (2016). arXiv:1511.00724
  89. 89.
    R. Alonso, E .E. Jenkins, A .V. Manohar, Sigma models with negative curvature. Phys. Lett. B 756, 358–364 (2016). arXiv:1602.00706
  90. 90.
    R. Alonso, E. E. Jenkins, A. V. Manohar, Geometry of the scalar sector. arXiv:1605.03602
  91. 91.
    R. Haag, Quantum field theories with composite particles and asymptotic conditions. Phys. Rev. 112, 669–673 (1958)MathSciNetCrossRefzbMATHADSGoogle Scholar
  92. 92.
    S. Kamefuchi, L. O’Raifeartaigh, A. Salam, Change of variables and equivalence theorems in quantum field theories. Nucl. Phys. 28, 529–549 (1961)MathSciNetCrossRefGoogle Scholar
  93. 93.
    H.D. Politzer, Power corrections at short distances. Nucl. Phys. B 172, 349–382 (1980)MathSciNetCrossRefADSGoogle Scholar
  94. 94.
    S. Weinberg, Baryon and lepton nonconserving processes. Phys. Rev. Lett. 43, 1566–1570 (1979)CrossRefADSGoogle Scholar
  95. 95.
    W. Buchmuller, D. Wyler, Effective lagrangian analysis of new interactions and flavor conservation. Nucl. Phys. B 268, 621–653 (1986)CrossRefADSGoogle Scholar
  96. 96.
    B. Grzadkowski, M. Iskrzynski, M. Misiak, J. Rosiek, Dimension-six terms in the standard model lagrangian. JHEP 10, 085 (2010). arXiv:1008.4884
  97. 97.
    L.F. Abbott, M.B. Wise, The Effective Hamiltonian for nucleon decay. Phys. Rev. D 22, 2208 (1980)CrossRefADSGoogle Scholar
  98. 98.
    L. Lehman, Extending the standard model effective field theory with the complete set of dimension-7 operators. Phys. Rev. D 90, 125023 (2014). arXiv:1410.4193
  99. 99.
    L. Lehman, A. Martin, Low-derivative operators of the Standard Model effective field theory via Hilbert series methods, arXiv:1510.00372
  100. 100.
    L. Berthier, M. Trott, Consistent constraints on the standard model effective field theory. JHEP 02, 069 (2016). arXiv:1508.05060
  101. 101.
    J. Brehmer, A. Freitas, D. Lopez-Val, T. Plehn, Pushing Higgs effective theory to its limits. Phys. Rev. D 93, 075014 (2016). arXiv:1510.03443
  102. 102.
    S. Fichet, G. Moreau, Anatomy of the Higgs fits: a first guide to statistical treatments of the theoretical uncertainties. Nucl. Phys. B 905, 391–446 (2016). arXiv:1509.00472
  103. 103.
    J .D. Wells, Z. Zhang, Effective theories of universal theories. JHEP 01, 123 (2016). arXiv:1510.08462
  104. 104.
    L. Berthier, M. Trott, Towards consistent electroweak precision data constraints in the SMEFT. JHEP 05, 024 (2015). arXiv:1502.02570
  105. 105.
    A. Biekötter, J. Brehmer, T. Plehn, Pushing Higgs effective theory over the edge, arXiv:1602.05202
  106. 106.
    B.W. Lee, J. Zinn-Justin, Spontaneously broken gauge symmetries. 1. preliminaries. Phys. Rev. D 5, 3121–3137 (1972)CrossRefADSGoogle Scholar
  107. 107.
    B.W. Lee, J. Zinn-Justin, Spontaneously broken gauge symmetries. 2. perturbation theory and renormalization. Phys. Rev. D 5, 3137–3155 (1972)CrossRefADSGoogle Scholar
  108. 108.
    B.W. Lee, J. Zinn-Justin, Spontaneously broken gauge symmetries. 3. equivalence. Phys. Rev. D 5, 3155–3160 (1972)CrossRefADSGoogle Scholar
  109. 109.
    B.W. Lee, J. Zinn-Justin, Spontaneously broken gauge symmetries. 4. general gauge formulation. Phys. Rev. D 7, 1049–1056 (1973)CrossRefADSGoogle Scholar
  110. 110.
    G. ’t Hooft, Renormalizable lagrangians for massive Yang-Mills fields. Nucl. Phys. B 35, 167–188 (1971)Google Scholar
  111. 111.
    G. ’t Hooft, Renormalization of massless Yang-Mills fields. Nucl. Phys. B 33, 173–199 (1971)Google Scholar
  112. 112.
    G. ’t Hooft and M. J. G. Veltman, Regularization and renormalization of gauge fields. Nucl. Phys. B 44, 189–213 (1972)Google Scholar
  113. 113.
    H.A. Weldon, The effects of multiple Higgs Bosons on tree unitarity. Phys. Rev. D 30, 1547 (1984)CrossRefADSGoogle Scholar
  114. 114.
    M.S. Chanowitz, Electroweak symmetry breaking: unitarity, dynamics, experimental prospects. Ann. Rev. Nucl. Part. Sci. 38, 323–420 (1988)CrossRefADSGoogle Scholar
  115. 115.
    R. Ferrari, Endowing the nonlinear sigma model with a flat connection structure: a way to renormalization. JHEP 08, 048 (2005). arXiv:hep-th/0504023
  116. 116.
    R. Ferrari, A. Quadri, A weak power-counting theorem for the renormalization of the non-linear sigma model in four dimensions. Int. J. Theor. Phys. 45, 2497–2515 (2006). arXiv:hep-th/0506220
  117. 117.
    R. Ferrari, A. Quadri, Renormalization of the non-linear sigma model in four dimensions: a two-loop example. JHEP 01, 003 (2006). arXiv:hep-th/0511032
  118. 118.
    E.C.G. Stueckelberg, Interaction forces in electrodynamics and in the field theory of nuclear forces. Helv. Phys. Acta 11, 299–328 (1938)Google Scholar
  119. 119.
    H. Ruegg, M. Ruiz-Altaba, The Stueckelberg field. Int. J. Mod. Phys. A 19, 3265–3348 (2004). arXiv:hep-th/0304245
  120. 120.
    A. Sanzeni, Nonlinear realization of the \(SU(5)\) Georgi-Glashow model, Master’s thesis, Universitá degli Studi di Milano, 2010Google Scholar
  121. 121.
    D. Bettinelli, R. Ferrari, A. Quadri, The Electroweak Model Based on the Nonlinearly Realized Gauge Group. Theoretical foundations and phenomenological prospects, PoS RADCOR 2009 064, (2010). arXiv:1001.2423
  122. 122.
    D. Bettinelli, R. Ferrari, A. Quadri, The \(SU(2) \otimes U(1)\) Electroweak model based on the nonlinearly realized gauge group. II. functional equations and the weak power-counting. Acta Phys. Polon B 41, 597–628 (2010). arXiv:0809.1994
  123. 123.
    D. Bettinelli, R. Ferrari, A. Quadri, The \(SU(2) \otimes U(1)\) electroweak model based on the nonlinearly realized gauge group. Int. J. Mod. Phys. A 24, 2639–2654 (2009). arXiv:0807.3882
  124. 124.
    D. Bettinelli, A. Quadri, D. Binosi, A. Quadri, Nonlinearly Realized gauge theories for LHC physics. PoS (EPS-HEP2013). 012, (2013). arXiv:1309.2882
  125. 125.
    D. Bettinelli, A. Quadri, Stückelberg mechanism in the presence of physical scalar resonances. Phys. Rev. D 88, 065023 (2013). arXiv:1307.2420
  126. 126.
    D. Bettinelli, D. Binosi, A. Quadri, Renormalization group equation for weakly power counting renormalizable theories. Eur. Phys. J. C 74, 3049 (2014). arXiv:1407.4009
  127. 127.
    M.B. Gavela, K. Kanshin, P.A.N. Machado, S. Saa, On the renormalization of the electroweak chiral Lagrangian with a Higgs. JHEP 03, 043 (2015). arXiv:1409.1571
  128. 128.
    F.-K. Guo, P. Ruiz-Femená, J .J. Sanz-Cillero, One loop renormalization of the electroweak chiral Lagrangian with a light Higgs boson. Phys. Rev. D 92, 074005 (2015). arXiv:1506.04204
  129. 129.
    K. Kanshin, One loop effective nonlinear Lagrangian with a light H-boson, in Proceedings of the 50th Rencontres de Moriond Electroweak interactions and unified theories, (2015), pp. 483–486. arXiv:1509.05919
  130. 130.
    D. Binosi, A. Quadri, Scalar resonances in the non-linearly realized electroweak theory. JHEP 02, 020 (2013). arXiv:1210.2637
  131. 131.
    A. Kobakhidze, Standard Model with a distorted Higgs sector and the enhanced Higgs diphoton decay rate. arXiv:1208.5180
  132. 132.
    R. Alonso, M.B. Gavela, L. Merlo, S. Rigolin, J. Yepes, Flavor with a light dynamical “Higgs particle”. Phys. Rev. D 87, 055019 (2013). arXiv:1212.3307
  133. 133.
    M.B. Gavela, J. Gonzalez-Fraile, M.C. Gonzalez-Garcia, L. Merlo, S. Rigolin, J. Yepes, CP violation with a dynamical Higgs. JHEP 10, 44 (2014). arXiv:1406.6367
  134. 134.
    T . Corbett, O .J .P. Éboli, M .C. Gonzalez-Garcia, Inverse amplitude method for the perturbative electroweak symmetry breaking setor: the singlet Higgs portal as a study case. Phys. Rev. D 93, 015005 (2016). arXiv:1509.01585
  135. 135.
    I .M. Hierro, L . Merlo, S. Rigolin, Sigma decomposition: the cp-odd lagrangian. JHEP 04, 016 (2016). arXiv:1510.07899
  136. 136.
    T. Corbett, O. J. P. Éboli, D. Goncalves, J. Gonzalez-Fraile, T. Plehn, M. Rauch, The non-linear Higgs legacy of the LHC Run I. arXiv:1511.08188
  137. 137.
    I. Brivio, J. Gonzalez-Fraile, M. C. Gonzalez-Garcia, L. Merlo, The complete HEFT Lagrangian after the LHC Run I. arXiv:1604.06801

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Department of PhysicsNational Taiwan Normal UniversityTaipeiTaiwan

Personalised recommendations