On Expansion and Resolution in CEGAR Based QBF Solving

Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10427)

Abstract

A quantified Boolean formula (QBF) is a propositional formula extended with universal and existential quantification over propositions. There are two methodologies in CEGAR based QBF solving techniques, one that is based on a refinement loop that builds partial expansions and a more recent one that is based on the communication of satisfied clauses. Despite their algorithmic similarity, their performance characteristics in experimental evaluations are very different and in many cases orthogonal. We compare those CEGAR approaches using proof theory developed around QBF solving and present a unified calculus that combines the strength of both approaches. Lastly, we implement the new calculus and confirm experimentally that the theoretical improvements lead to improved performance.

References

  1. 1.
    Beyersdorff, O., Chew, L., Janota, M.: On unification of QBF resolution-based calculi. In: Csuhaj-Varjú, E., Dietzfelbinger, M., Ésik, Z. (eds.) MFCS 2014. LNCS, vol. 8635, pp. 81–93. Springer, Heidelberg (2014). doi:10.1007/978-3-662-44465-8_8 Google Scholar
  2. 2.
    Beyersdorff, O., Chew, L., Janota, M.: Proof complexity of resolution-based QBF calculi. In: Proceedings of STACS. LIPIcs, vol. 30, pp. 76–89. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik (2015)Google Scholar
  3. 3.
    Biere, A.: PicoSAT essentials. JSAT 4(2–4), 75–97 (2008)MATHGoogle Scholar
  4. 4.
    Biere, A.: Lingeling essentials, a tutorial on design and implementation aspects of the the SAT solver lingeling. In: Proceedings of POS@SAT. EPiC Series in Computing, vol. 27, p. 88. EasyChair (2014)Google Scholar
  5. 5.
    Biere, A., Lonsing, F., Seidl, M.: Blocked clause elimination for QBF. In: Bjørner, N., Sofronie-Stokkermans, V. (eds.) CADE 2011. LNCS, vol. 6803, pp. 101–115. Springer, Heidelberg (2011). doi:10.1007/978-3-642-22438-6_10 CrossRefGoogle Scholar
  6. 6.
    Bloem, R., Egly, U., Klampfl, P., Könighofer, R., Lonsing, F.: SAT-based methods for circuit synthesis. In: Proceedings of FMCAD, pp. 31–34. IEEE (2014)Google Scholar
  7. 7.
    Bloem, R., Könighofer, R., Seidl, M.: SAT-based synthesis methods for safety specs. In: McMillan, K.L., Rival, X. (eds.) VMCAI 2014. LNCS, vol. 8318, pp. 1–20. Springer, Heidelberg (2014). doi:10.1007/978-3-642-54013-4_1 CrossRefGoogle Scholar
  8. 8.
    Eén, N., Sörensson, N.: An extensible SAT-solver. In: Giunchiglia, E., Tacchella, A. (eds.) SAT 2003. LNCS, vol. 2919, pp. 502–518. Springer, Heidelberg (2004). doi:10.1007/978-3-540-24605-3_37 CrossRefGoogle Scholar
  9. 9.
    Egly, U.: On stronger calculi for QBFs. In: Creignou, N., Le Berre, D. (eds.) SAT 2016. LNCS, vol. 9710, pp. 419–434. Springer, Cham (2016). doi:10.1007/978-3-319-40970-2_26 Google Scholar
  10. 10.
    Faymonville, P., Finkbeiner, B., Rabe, M.N., Tentrup, L.: Encodings of bounded synthesis. In: Legay, A., Margaria, T. (eds.) TACAS 2017. LNCS, vol. 10205, pp. 354–370. Springer, Heidelberg (2017). doi:10.1007/978-3-662-54577-5_20 CrossRefGoogle Scholar
  11. 11.
    Finkbeiner, B.: Bounded synthesis for petri games. In: Meyer, R., Platzer, A., Wehrheim, H. (eds.) Correct System Design. LNCS, vol. 9360, pp. 223–237. Springer, Cham (2015). doi:10.1007/978-3-319-23506-6_15 CrossRefGoogle Scholar
  12. 12.
    Finkbeiner, B., Tentrup, L.: Detecting unrealizability of distributed fault-tolerant systems. Logical Methods Comput. Sci. 11(3) (2015)Google Scholar
  13. 13.
    Gelder, A.: Contributions to the theory of practical quantified boolean formula solving. In: Milano, M. (ed.) CP 2012. LNCS, pp. 647–663. Springer, Heidelberg (2012). doi:10.1007/978-3-642-33558-7_47 CrossRefGoogle Scholar
  14. 14.
    Goerdt, A.: Davis-Putnam resolution versus unrestricted resolution. Ann. Math. Artif. Intell. 6(1–3), 169–184 (1992)MathSciNetCrossRefMATHGoogle Scholar
  15. 15.
    Janota, M.: On Q-resolution and CDCL QBF solving. In: Creignou, N., Le Berre, D. (eds.) SAT 2016. LNCS, vol. 9710, pp. 402–418. Springer, Cham (2016). doi:10.1007/978-3-319-40970-2_25 Google Scholar
  16. 16.
    Janota, M., Klieber, W., Marques-Silva, J., Clarke, E.M.: Solving QBF with counterexample guided refinement. Artif. Intell. 234, 1–25 (2016)MathSciNetCrossRefMATHGoogle Scholar
  17. 17.
    Janota, M., Marques-Silva, J.: Expansion-based QBF solving versus Q-resolution. Theor. Comput. Sci. 577, 25–42 (2015)MathSciNetCrossRefMATHGoogle Scholar
  18. 18.
    Janota, M., Marques-Silva, J.: Solving QBF by clause selection. In: Proceedings of IJCAI, pp. 325–331. AAAI Press (2015)Google Scholar
  19. 19.
    Büning, H.K., Karpinski, M., Flögel, A.: Resolution for quantified Boolean formulas. Inf. Comput. 117(1), 12–18 (1995)MathSciNetCrossRefMATHGoogle Scholar
  20. 20.
    Klieber, W., Sapra, S., Gao, S., Clarke, E.: A non-prenex, non-clausal QBF solver with game-state learning. In: Strichman, O., Szeider, S. (eds.) SAT 2010. LNCS, vol. 6175, pp. 128–142. Springer, Heidelberg (2010). doi:10.1007/978-3-642-14186-7_12 CrossRefGoogle Scholar
  21. 21.
    Lonsing, F., Biere, A.: DepQBF: a dependency-aware QBF solver. JSAT 7(2–3), 71–76 (2010)Google Scholar
  22. 22.
    Lonsing, F., Egly, U., Seidl, M.: Q-resolution with generalized axioms. In: Creignou, N., Le Berre, D. (eds.) SAT 2016. LNCS, vol. 9710, pp. 435–452. Springer, Cham (2016). doi:10.1007/978-3-319-40970-2_27 Google Scholar
  23. 23.
    Mahajan, M., Shukla, A.: Level-ordered Q-resolution and tree-like Q-resolution are incomparable. Inf. Process. Lett. 116(3), 256–258 (2016)MathSciNetCrossRefMATHGoogle Scholar
  24. 24.
    Miller, C., Scholl, C., Becker, B.: Proving QBF-hardness in bounded model checking for incomplete designs. In: Proceedings of MTV, pp. 23–28. IEEE Computer Society (2013)Google Scholar
  25. 25.
    Rabe, M.N., Tentrup, L.: CAQE: a certifying QBF solver. In: Proceedings of FMCAD, pp. 136–143. IEEE (2015)Google Scholar
  26. 26.
    Soos, M., Nohl, K., Castelluccia, C.: Extending SAT solvers to cryptographic problems. In: Kullmann, O. (ed.) SAT 2009. LNCS, vol. 5584, pp. 244–257. Springer, Heidelberg (2009). doi:10.1007/978-3-642-02777-2_24 CrossRefGoogle Scholar
  27. 27.
    Zhang, L., Malik, S.: Conflict driven learning in a quantified Boolean satisfiability solver. In: Proceedings of ICCAD, pp. 442–449. ACM/IEEE Computer Society (2002)Google Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Saarland UniversitySaarbrückenGermany

Personalised recommendations