A Correct-by-Decision Solution for Simultaneous Place and Route

  • Alexander NadelEmail author
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10427)


To reduce a problem, provided in a human language, to constraint solving, one normally maps it to a set of constraints, written in the language of a suitable logic. This paper highlights a different paradigm, in which the original problem is converted into a set of constraints and a decision strategy, where the decision strategy is essential for guaranteeing the correctness of the modeling. We name such a paradigm Correct-by-Decision. Furthermore, we propose a Correct-by-Decision-based solution within a SAT solving framework for a critical industrial problem that shows up in the physical design stage of the CAD process: simultaneous place and route under arbitrary constraints (design rules). We demonstrate the usefulness of our approach experimentally on industrial and crafted instances.


  1. 1.
    Abboud, N., Grötschel, M., Koch, T.: Mathematical methods for physical layout of printed circuit boards: an overview. OR Spectr. 30(3), 453–468 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Audemard, G., Lagniez, J.-M., Simon, L.: Improving glucose for incremental SAT solving with assumptions: application to MUS extraction. In: Järvisalo, M., Van Gelder, A. (eds.) SAT 2013. LNCS, vol. 7962, pp. 309–317. Springer, Heidelberg (2013). doi: 10.1007/978-3-642-39071-5_23 CrossRefGoogle Scholar
  3. 3.
    Barrett, C., Donham, J.: Combining SAT methods with non-clausal decision heuristics. Electr. Notes Theor. Comput. Sci. 125(3), 3–12 (2005)CrossRefzbMATHGoogle Scholar
  4. 4.
    Bayless, S., Bayless, N., Hoos, H.H., Hu, A.J.: SAT modulo monotonic theories. In: Bonet, B., Koenig, S. (eds.) Proceedings of the Twenty-Ninth AAAI Conference on Artificial Intelligence, 25–30 January 2015, Austin, Texas, USA, pp. 3702–3709. AAAI Press, New York (2015)Google Scholar
  5. 5.
    Biere, A., Le Berre, D., Lonca, E., Manthey, N.: Detecting cardinality constraints in CNF. In: Sinz, C., Egly, U. (eds.) [20], pp. 285–301Google Scholar
  6. 6.
    Brummayer, R., Biere, A.: Lemmas on demand for the extensional theory of arrays. JSAT 6(1–3), 165–201 (2009)MathSciNetzbMATHGoogle Scholar
  7. 7.
    Eén, N., Sörensson, N.: An extensible SAT-solver. In: Giunchiglia, E., Tacchella, A. (eds.) SAT 2003. LNCS, vol. 2919, pp. 502–518. Springer, Heidelberg (2004). doi: 10.1007/978-3-540-24605-3_37 CrossRefGoogle Scholar
  8. 8.
    Erez, A., Nadel, A.: Finding bounded path in graph using SMT for automatic clock routing. In: Kroening, D., Păsăreanu, C.S. (eds.) CAV 2015. LNCS, vol. 9207, pp. 20–36. Springer, Cham (2015). doi: 10.1007/978-3-319-21668-3_2 CrossRefGoogle Scholar
  9. 9.
    Hadarean, L.: An efficient and trustworthy theory solver for bit-vectors in satisfiability modulo theories. Dissertation, New York University (2015)Google Scholar
  10. 10.
    Khasidashvili, Z., Nadel, A.: Implicative simultaneous satisfiability and applications. In: Eder, K., Lourenço, J., Shehory, O. (eds.) HVC 2011. LNCS, vol. 7261, pp. 66–79. Springer, Heidelberg (2012). doi: 10.1007/978-3-642-34188-5_9 CrossRefGoogle Scholar
  11. 11.
    Nadel, A.: A correct-by-decision solution for simultaneous place and route: benchmarks and detailed results.
  12. 12.
    Nadel, A.: Routing under constraints. In: Piskac, R., Talupur, M. (eds.) 2016 Formal Methods in Computer-Aided Design, FMCAD 2016, Mountain View, CA, USA, 3–6 October 2016, pp. 125–132. IEEE, Washington, D.C. (2016)Google Scholar
  13. 13.
    Nadel, A., Ryvchin, V.: Efficient SAT solving under assumptions. In: Cimatti, A., Sebastiani, R. (eds.) SAT 2012. LNCS, vol. 7317, pp. 242–255. Springer, Heidelberg (2012). doi: 10.1007/978-3-642-31612-8_19 CrossRefGoogle Scholar
  14. 14.
    Nadel, A., Ryvchin, V., Strichman, O.: Ultimately incremental SAT. In: Sinz, C., Egly, U. (eds.) [20], pp. 206–218Google Scholar
  15. 15.
    Nag, S., Rutenbar, R.A.: Performance-driven simultaneous place and route for row-based FPGAs. In: DAC, pp. 301–307 (1994)Google Scholar
  16. 16.
    Nag, S.K., Rutenbar, R.A.: Performance-driven simultaneous place and route for island-style FPGAs. In: Rudell, R.L., (eds.) Proceedings of the 1995 IEEE/ACM International Conference on Computer-Aided Design, ICCAD 1995, San Jose, California, USA, 5–9 November 1995, pp. 332–338. IEEE Computer Society/ACM, Washington, D.C. (1995)Google Scholar
  17. 17.
    Ramalingam, G., Reps, T.W.: An incremental algorithm for a generalization of the shortest-path problem. J. Algorithms 21(2), 267–305 (1996)MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Sabharwal, A.: Symchaff: a structure-aware satisfiability solver. In: Veloso, M.M., Kambhampati, S. (eds.) Proceedings of the Twentieth National Conference on Artificial Intelligence and the Seventeenth Innovative Applications of Artificial Intelligence Conference, 9–13 July 2005, Pittsburgh, Pennsylvania, USA, pp. 467–474. AAAI Press/The MIT Press, Austin (2005)Google Scholar
  19. 19.
    Sherwani, N.A.: Algorithms for VLSI Physical Design Automation, 3rd edn. Kluwer, Dordrecht (1998)zbMATHGoogle Scholar
  20. 20.
    Sinz, C., Egly, U. (eds.): SAT 2014. LNCS, vol. 8561. Springer, Cham (2014)zbMATHGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Intel CorporationHaifaIsrael

Personalised recommendations