BoSy: An Experimentation Framework for Bounded Synthesis

  • Peter Faymonville
  • Bernd Finkbeiner
  • Leander Tentrup
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10427)

Abstract

We present \(\textsf {BoSy}\), a reactive synthesis tool based on the bounded synthesis approach. Bounded synthesis ensures the minimality of the synthesized implementation by incrementally increasing a bound on the size of the solutions it considers. For each bound, the existence of a solution is encoded as a logical constraint solving problem that is solved by an appropriate solver. \(\textsf {BoSy}\) constructs bounded synthesis encodings into SAT, QBF, DQBF, EPR, and SMT, and interfaces to solvers of the corresponding type. When supported by the solver, \(\textsf {BoSy}\) extracts solutions as circuits, which can, if desired, be verified with standard hardware model checkers. \(\textsf {BoSy}\) won the LTL synthesis track at SYNTCOMP 2016. In addition to its use as a synthesis tool, \(\textsf {BoSy}\) can also be used as an experimentation and performance evaluation framework for various types of satisfiability solvers.

References

  1. 1.
    Babiak, T., Křetínský, M., Řehák, V., Strejček, J.: LTL to Büchi automata translation: fast and more deterministic. In: Flanagan, C., König, B. (eds.) TACAS 2012. LNCS, vol. 7214, pp. 95–109. Springer, Heidelberg (2012). doi:10.1007/978-3-642-28756-5_8 CrossRefGoogle Scholar
  2. 2.
    Barrett, C., Conway, C.L., Deters, M., Hadarean, L., Jovanović, D., King, T., Reynolds, A., Tinelli, C.: CVC4. In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV 2011. LNCS, vol. 6806, pp. 171–177. Springer, Heidelberg (2011). doi:10.1007/978-3-642-22110-1_14 CrossRefGoogle Scholar
  3. 3.
    Biere, A.: Picosat essentials. JSAT 4(2–4), 75–97 (2008)MATHGoogle Scholar
  4. 4.
    Biere, A., Lonsing, F., Seidl, M.: Blocked clause elimination for QBF. In: Bjørner, N., Sofronie-Stokkermans, V. (eds.) CADE 2011. LNCS (LNAI), vol. 6803, pp. 101–115. Springer, Heidelberg (2011). doi:10.1007/978-3-642-22438-6_10 CrossRefGoogle Scholar
  5. 5.
    Bohy, A., Bruyère, V., Filiot, E., Jin, N., Raskin, J.-F.: Acacia+, a tool for LTL synthesis. In: Madhusudan, P., Seshia, S.A. (eds.) CAV 2012. LNCS, vol. 7358, pp. 652–657. Springer, Heidelberg (2012). doi:10.1007/978-3-642-31424-7_45 CrossRefGoogle Scholar
  6. 6.
    Church, A.: Application of recursive arithmetic to the problem of circuit synthesis. J. Symbolic Logic 28(4), 289–290 (1963)CrossRefGoogle Scholar
  7. 7.
    Cimatti, A., Clarke, E., Giunchiglia, E., Giunchiglia, F., Pistore, M., Roveri, M., Sebastiani, R., Tacchella, A.: NuSMV 2: an opensource tool for symbolic model checking. In: Brinksma, E., Larsen, K.G. (eds.) CAV 2002. LNCS, vol. 2404, pp. 359–364. Springer, Heidelberg (2002). doi:10.1007/3-540-45657-0_29 CrossRefGoogle Scholar
  8. 8.
    Duret-Lutz, A., Lewkowicz, A., Fauchille, A., Michaud, T., Renault, É., Xu, L.: Spot 2.0 — a framework for LTL and \(\omega \)-automata manipulation. In: Artho, C., Legay, A., Peled, D. (eds.) ATVA 2016. LNCS, vol. 9938, pp. 122–129. Springer, Cham (2016). doi:10.1007/978-3-319-46520-3_8 CrossRefGoogle Scholar
  9. 9.
    Ehlers, R.: Unbeast: symbolic bounded synthesis. In: Abdulla, P.A., Leino, K.R.M. (eds.) TACAS 2011. LNCS, vol. 6605, pp. 272–275. Springer, Heidelberg (2011). doi:10.1007/978-3-642-19835-9_25 CrossRefGoogle Scholar
  10. 10.
    Faymonville, P., Finkbeiner, B., Rabe, M.N., Tentrup, L.: Encodings of bounded synthesis. In: Legay, A., Margaria, T. (eds.) TACAS 2017. LNCS, vol. 10205, pp. 354–370. Springer, Heidelberg (2017). doi:10.1007/978-3-662-54577-5_20 CrossRefGoogle Scholar
  11. 11.
    Filiot, E., Jin, N., Raskin, J.-F.: An antichain algorithm for LTL realizability. In: Bouajjani, A., Maler, O. (eds.) CAV 2009. LNCS, vol. 5643, pp. 263–277. Springer, Heidelberg (2009). doi:10.1007/978-3-642-02658-4_22 CrossRefGoogle Scholar
  12. 12.
    Finkbeiner, B., Schewe, S.: Bounded synthesis. STTT 15(5–6), 519–539 (2013)CrossRefMATHGoogle Scholar
  13. 13.
    Fröhlich, A., Kovásznai, G., Biere, A., Veith, H.: iDQ: instantiation-based DQBF solving. In: Proceedings of POS@SAT. EPiC Series in Computing, vol. 27, pp. 103–116. EasyChair (2014)Google Scholar
  14. 14.
    Jacobs, S., Bloem, R., Brenguier, R., Khalimov, A., Klein, F., Könighofer, R., Kreber, J., Legg, A., Narodytska, N., Pérez, G.A., Raskin, J., Ryzhyk, L., Sankur, O., Seidl, M., Tentrup, L., Walker, A.: The 3rd reactive synthesis competition (SYNTCOMP 2016): Benchmarks, participants & results. In: Proceedings of SYNT@CAV. EPTCS, vol. 229, pp. 149–177 (2016)Google Scholar
  15. 15.
    Jacobs, S., Klein, F., Schirmer, S.: A high-level LTL synthesis format: TLSF v1.1. In: Proceedings of SYNT@CAV. EPTCS, vol. 229, pp. 112–132 (2016)Google Scholar
  16. 16.
    Janota, M., Klieber, W., Marques-Silva, J., Clarke, E.M.: Solving QBF with counterexample guided refinement. Artif. Intell. 234, 1–25 (2016)MathSciNetCrossRefMATHGoogle Scholar
  17. 17.
    Jobstmann, B., Bloem, R.: Optimizations for LTL synthesis. In: FMCAD, pp. 117–124. IEEE Computer Society (2006)Google Scholar
  18. 18.
    Lonsing, F., Biere, A.: DepQBF: a dependency-aware QBF solver. JSAT 7(2–3), 71–76 (2010)Google Scholar
  19. 19.
    Moura, L., Bjørner, N.: Z3: an efficient SMT solver. In: Ramakrishnan, C.R., Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 337–340. Springer, Heidelberg (2008). doi:10.1007/978-3-540-78800-3_24 CrossRefGoogle Scholar
  20. 20.
    Rabe, M.N., Seshia, S.A.: Incremental determinization. In: Creignou, N., Le Berre, D. (eds.) SAT 2016. LNCS, vol. 9710, pp. 375–392. Springer, Cham (2016). doi:10.1007/978-3-319-40970-2_23 Google Scholar
  21. 21.
    Rabe, M.N., Tentrup, L.: CAQE: A certifying QBF solver. In: Proceedings of FMCAD, pp. 136–143. IEEE (2015)Google Scholar
  22. 22.
    Roussel, O.: Controlling a solver execution with the runsolver tool. JSAT 7(4), 139–144 (2011)MathSciNetMATHGoogle Scholar
  23. 23.
    Seidl, M., Könighofer, R.: Partial witnesses from preprocessed quantified boolean formulas. In: Proceedings of DATE, pp. 1–6. European Design and Automation Association (2014)Google Scholar
  24. 24.
    Soos, M., Nohl, K., Castelluccia, C.: Extending SAT solvers to cryptographic problems. In: Kullmann, O. (ed.) SAT 2009. LNCS, vol. 5584, pp. 244–257. Springer, Heidelberg (2009). doi:10.1007/978-3-642-02777-2_24 CrossRefGoogle Scholar
  25. 25.
    Tentrup, L.: Solving QBF by abstraction. CoRR abs/1604.06752 (2016)Google Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Peter Faymonville
    • 1
  • Bernd Finkbeiner
    • 1
  • Leander Tentrup
    • 1
  1. 1.Saarland UniversitySaarbrückenGermany

Personalised recommendations