Automated Formal Synthesis of Digital Controllers for State-Space Physical Plants

  • Alessandro Abate
  • Iury Bessa
  • Dario Cattaruzza
  • Lucas CordeiroEmail author
  • Cristina David
  • Pascal Kesseli
  • Daniel Kroening
  • Elizabeth Polgreen
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10426)


We present a sound and automated approach to synthesize safe digital feedback controllers for physical plants represented as linear, time-invariant models. Models are given as dynamical equations with inputs, evolving over a continuous state space and accounting for errors due to the digitization of signals by the controller. Our counterexample guided inductive synthesis (CEGIS) approach has two phases: We synthesize a static feedback controller that stabilizes the system but that may not be safe for all initial conditions. Safety is then verified either via BMC or abstract acceleration; if the verification step fails, a counterexample is provided to the synthesis engine and the process iterates until a safe controller is obtained. We demonstrate the practical value of this approach by automatically synthesizing safe controllers for intricate physical plant models from the digital control literature.


  1. 1.
    Control tutorials for MATLAB and SIMULINK.
  2. 2.
    Abate, A., Bessa, I., Cattaruzza, D., Cordeiro, L.C., David, C., Kesseli, P., Kroening, D.: Sound and automated synthesis of digital stabilizing controllers for continuous plants. In: Hybrid Systems: Computation and Control (HSCC), pp. 197–206. ACM (2017)Google Scholar
  3. 3.
    Anta, A., Majumdar, R., Saha, I., Tabuada, P.: Automatic verification of control system implementations. In: EMSOFT, pp. 9–18 (2010)Google Scholar
  4. 4.
    Åström, K., Wittenmark, B.: Computer-Controlled Systems: Theory and Design. Prentice Hall Information and System Sciences Series. Prentice Hall, Upper Saddle River (1997)Google Scholar
  5. 5.
    Bessa, I., Ismail, H., Palhares, R., Cordeiro, L., Filho, J.E.C.: Formal non-fragile stability verification of digital control systems with uncertainty. IEEE Trans. Comput. 66(3), 545–552 (2017)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Brain, M., Tinelli, C., Rümmer, P., Wahl, T.: An automatable formal semantics for IEEE-754 floating-point arithmetic. In: ARITH, pp. 160–167. IEEE (2015)Google Scholar
  7. 7.
    Cattaruzza, D., Abate, A., Schrammel, P., Kroening, D.: Unbounded-time analysis of guarded LTI systems with inputs by abstract acceleration. In: Blazy, S., Jensen, T. (eds.) SAS 2015. LNCS, vol. 9291, pp. 312–331. Springer, Heidelberg (2015). doi: 10.1007/978-3-662-48288-9_18 CrossRefGoogle Scholar
  8. 8.
    David, C., Kroening, D., Lewis, M.: Using program synthesis for program analysis. In: Davis, M., Fehnker, A., McIver, A., Voronkov, A. (eds.) LPAR 2015. LNCS, vol. 9450, pp. 483–498. Springer, Heidelberg (2015). doi: 10.1007/978-3-662-48899-7_34 CrossRefGoogle Scholar
  9. 9.
    de Bessa, I.V., Ismail, H., Cordeiro, L.C., Filho, J.E.C.: Verification of fixed-point digital controllers using direct and delta forms realizations. Des. Autom. Emb. Syst. 20(2), 95–126 (2016)CrossRefGoogle Scholar
  10. 10.
    Duggirala, P.S., Viswanathan, M.: Analyzing real time linear control systems using software verification. In: IEEE Real-Time Systems Symposium, pp. 216–226, December 2015Google Scholar
  11. 11.
    Fadali, S., Visioli, A.: Digital Control Engineering: Analysis and Design. Electronics & Electrical. Elsevier/Academic Press, Amsterdam/Cambridge (2009)Google Scholar
  12. 12.
    Fialho, I.J., Georgiou, T.T.: On stability and performance of sampled-data systems subject to wordlength constraint. IEEE Trans. Autom. Control 39(12), 2476–2481 (1994)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Franklin, G., Powell, D., Emami-Naeini, A.: Feedback Control of Dynamic Systems, 7th edn. Pearson, Upper Saddle River (2015)zbMATHGoogle Scholar
  14. 14.
    Frehse, G., et al.: SpaceEx: scalable verification of hybrid systems. In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV 2011. LNCS, vol. 6806, pp. 379–395. Springer, Heidelberg (2011). doi: 10.1007/978-3-642-22110-1_30 CrossRefGoogle Scholar
  15. 15.
    Horn, R.A., Johnson, C.: Matrix Analysis. Cambridge University Press, Cambridge (1990)Google Scholar
  16. 16.
    Itzhaky, S., Gulwani, S., Immerman, N., Sagiv, M.: A simple inductive synthesis methodology and its applications. In: OOPSLA, pp. 36–46. ACM (2010)Google Scholar
  17. 17.
    Kroening, D., Strichman, O.: Efficient computation of recurrence diameters. In: Zuck, L.D., Attie, P.C., Cortesi, A., Mukhopadhyay, S. (eds.) VMCAI 2003. LNCS, vol. 2575, pp. 298–309. Springer, Heidelberg (2003). doi: 10.1007/3-540-36384-X_24 CrossRefGoogle Scholar
  18. 18.
    Li, G.: On pole and zero sensitivity of linear systems. IEEE Trans. Circuits Syst.-I: Fundam. Theory Appl. 44(7), 583–590 (1997)Google Scholar
  19. 19.
    Liberzon, D.: Hybrid feedback stabilization of systems with quantized signals. Automatica 39(9), 1543–1554 (2003)MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Liu, J., Ozay, N.: Finite abstractions with robustness margins for temporal logic-based control synthesis. Nonlinear Anal.: Hybrid Syst. 22, 1–15 (2016)MathSciNetzbMATHGoogle Scholar
  21. 21.
    Mazo, M., Davitian, A., Tabuada, P.: PESSOA: a tool for embedded controller synthesis. In: Touili, T., Cook, B., Jackson, P. (eds.) CAV 2010. LNCS, vol. 6174, pp. 566–569. Springer, Heidelberg (2010). doi: 10.1007/978-3-642-14295-6_49 CrossRefGoogle Scholar
  22. 22.
    Moore, R.E.: Interval Analysis, vol. 4. Prentice-Hall, Englewood Cliffs (1966)Google Scholar
  23. 23.
    Oliveira, V.A., Costa, E.F., Vargas, J.B.: Digital implementation of a magnetic suspension control system for laboratory experiments. IEEE Trans. Educ. 42(4), 315–322 (1999)CrossRefGoogle Scholar
  24. 24.
    Oudjida, A.K., Chaillet, N., Liacha, A., Berrandjia, M.L., Hamerlain, M.: Design of high-speed and low-power finite-word-length PID controllers. Control Theory Technol. 12(1), 68–83 (2014)MathSciNetCrossRefGoogle Scholar
  25. 25.
    Park, J., Pajic, M., Lee, I., Sokolsky, O.: Scalable verification of linear controller software. In: Chechik, M., Raskin, J.-F. (eds.) TACAS 2016. LNCS, vol. 9636, pp. 662–679. Springer, Heidelberg (2016). doi: 10.1007/978-3-662-49674-9_43 CrossRefGoogle Scholar
  26. 26.
    Picasso, B., Bicchi, A.: Stabilization of LTI systems with quantized state - quantized input static feedback. In: Maler, O., Pnueli, A. (eds.) HSCC 2003. LNCS, vol. 2623, pp. 405–416. Springer, Heidelberg (2003). doi: 10.1007/3-540-36580-X_30 CrossRefGoogle Scholar
  27. 27.
    Ravanbakhsh, H., Sankaranarayanan, S.: Counter-example guided synthesis of control Lyapunov functions for switched systems. In: Conference on Decision and Control (CDC), pp. 4232–4239 (2015)Google Scholar
  28. 28.
    Ravanbakhsh, H., Sankaranarayanan, S.: Robust controller synthesis of switched systems using counterexample guided framework. In: EMSOFT, pp. 8:1–8:10. ACM (2016)Google Scholar
  29. 29.
    Roux, P., Jobredeaux, R., Garoche, P.: Closed loop analysis of control command software. In: HSCC, pp. 108–117. ACM (2015)Google Scholar
  30. 30.
    Solar-Lezama, A., Tancau, L., Bodík, R., Seshia, S.A., Saraswat, V.A.: Combinatorial sketching for finite programs. In: ASPLOS, pp. 404–415. ACM (2006)Google Scholar
  31. 31.
    Tan, R.H.G., Hoo, L.Y.H.: DC-DC converter modeling and simulation using state space approach. In: IEEE Conference on Energy Conversion, CENCON, pp. 42–47, October 2015Google Scholar
  32. 32.
    Wang, T.E., Garoche, P., Roux, P., Jobredeaux, R., Feron, E.: Formal analysis of robustness at model and code level. In: HSCC, pp. 125–134. ACM (2016)Google Scholar
  33. 33.
    Wu, J., Li, G., Chen, S., Chu, J.: Robust finite word length controller design. Automatica 45(12), 2850–2856 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  34. 34.
    Zamani, M., Mazo, M., Abate, A.: Finite abstractions of networked control systems. In: IEEE CDC, pp. 95–100 (2014)Google Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Alessandro Abate
    • 1
  • Iury Bessa
    • 2
  • Dario Cattaruzza
    • 1
  • Lucas Cordeiro
    • 1
    • 2
    Email author
  • Cristina David
    • 1
  • Pascal Kesseli
    • 1
  • Daniel Kroening
    • 1
  • Elizabeth Polgreen
    • 1
  1. 1.University of OxfordOxfordUK
  2. 2.Federal University of AmazonasManausBrazil

Personalised recommendations