DryVR: Data-Driven Verification and Compositional Reasoning for Automotive Systems

  • Chuchu FanEmail author
  • Bolun Qi
  • Sayan Mitra
  • Mahesh Viswanathan
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10426)


We present the DryVR framework for verifying hybrid control systems that are described by a combination of a black-box simulator for trajectories and a white-box transition graph specifying mode switches. The framework includes (a) a probabilistic algorithm for learning sensitivity of the continuous trajectories from simulation data, (b) a bounded reachability analysis algorithm that uses the learned sensitivity, and (c) reasoning techniques based on simulation relations and sequential composition, that enable verification of complex systems under long switching sequences, from the reachability analysis of a simpler system under shorter sequences. We demonstrate the utility of the framework by verifying a suite of automotive benchmarks that include powertrain control, automatic transmission, and several autonomous and ADAS features like automatic emergency braking, lane-merge, and auto-passing controllers.


  1. 1.
    Alur, R., Dang, T., Ivančić, F.: Counter-example guided predicate abstraction of hybrid systems. In: Garavel, H., Hatcliff, J. (eds.) TACAS 2003. LNCS, vol. 2619, pp. 208–223. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  2. 2.
    Annapureddy, Y., Liu, C., Fainekos, G., Sankaranarayanan, S.: S-taliro: a tool for temporal logic falsification for hybrid systems. In: Proceedings of the International Conference on Tools and Algorithms for the Construction and Analysis of Systems (2011)Google Scholar
  3. 3.
    Asarin, E., Dang, T., Maler, O.: The d/dt tool for verification of hybrid systems. In: Brinksma, E., Larsen, K.G. (eds.) CAV 2002. LNCS, vol. 2404, pp. 365–370. Springer, Heidelberg (2002). doi: 10.1007/3-540-45657-0_30 CrossRefGoogle Scholar
  4. 4.
    Balluchi, A., Casagrande, A., Collins, P., Ferrari, A., Villa, T., Sangiovanni-Vincentelli, A.L.: Ariadne: a framework for reachability analysis of hybrid automata. In: Proceedings of the International Syposium on Mathematical Theory of Networks and Systems. Citeseer (2006)Google Scholar
  5. 5.
    Bogomolov, S., Frehse, G., Greitschus, M., Grosu, R., Pasareanu, C.S., Podelski, A., Strump, T.: Assume-guarantee abstraction refinement meets hybrid systems. In: 10th International Haifa Verification Conference, pp. 116–131 (2014)Google Scholar
  6. 6.
    Čerāns, K.: Decidability of bisimulation equivalences for parallel timer processes. In: von Bochmann, G., Probst, D.K. (eds.) CAV 1992. LNCS, vol. 663, pp. 302–315. Springer, Heidelberg (1993). doi: 10.1007/3-540-56496-9_24 CrossRefGoogle Scholar
  7. 7.
    Chen, X., Ábrahám, E., Sankaranarayanan, S.: Flow*: an analyzer for non-linear hybrid systems. In: International Conference on Computer Aided Verification, pp. 258–263 (2013)Google Scholar
  8. 8.
    Clarke, E., Fehnker, A., Han, Z., Krogh, B., Stursberg, O., Theobald, M.: Verification of hybrid systems based on counterexample-guided abstraction refinement. In: Garavel, H., Hatcliff, J. (eds.) TACAS 2003. LNCS, vol. 2619, pp. 192–207. Springer, Heidelberg (2003). doi: 10.1007/3-540-36577-X_14 CrossRefGoogle Scholar
  9. 9.
    de Moura, L., Bjørner, N.: Z3: an efficient SMT solver. In: Ramakrishnan, C.R., Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 337–340. Springer, Heidelberg (2008). doi: 10.1007/978-3-540-78800-3_24 CrossRefGoogle Scholar
  10. 10.
    Deng, Y., Rajhans, A., Julius, A.A.: Strong: a trajectory-based verification toolbox for hybrid systems. In: International Conference on Quantitative Evaluation of SysTems, pp. 165–168 (2013)Google Scholar
  11. 11.
    Donzé, A.: Breach, a toolbox for verification and parameter synthesis of hybrid systems. In: Touili, T., Cook, B., Jackson, P. (eds.) CAV 2010. LNCS, vol. 6174, pp. 167–170. Springer, Heidelberg (2010). doi: 10.1007/978-3-642-14295-6_17 CrossRefGoogle Scholar
  12. 12.
    Donzé, A., Maler, O.: Systematic simulation using sensitivity analysis. In: Bemporad, A., Bicchi, A., Buttazzo, G. (eds.) HSCC 2007. LNCS, vol. 4416, pp. 174–189. Springer, Heidelberg (2007). doi: 10.1007/978-3-540-71493-4_16 CrossRefGoogle Scholar
  13. 13.
    Duggirala, P.S.: Dynamic analysis of cyber-physical systems. Ph.D. thesis, University of Illinois at Urbana-Champaign (2015)Google Scholar
  14. 14.
    Duggirala, P.S., Fan, C., Mitra, S., Viswanathan, M.: Meeting a powertrain verification challenge. In: Kroening, D., Păsăreanu, C.S. (eds.) CAV 2015. LNCS, vol. 9206, pp. 536–543. Springer, Cham (2015). doi: 10.1007/978-3-319-21690-4_37 CrossRefGoogle Scholar
  15. 15.
    Duggirala, P.S., Mitra, S., Viswanathan, M.: Verification of annotated models from executions. In: Proceedings of International Conference on Embedded Software (EMSOFT 2013), Montreal, QC, Canada, pp. 1–10. ACM SIGBED, IEEE, September 2013Google Scholar
  16. 16.
    Duggirala, P.S., Mitra, S., Viswanathan, M., Potok, M.: C2E2: a verification tool for stateflow models. In: Baier, C., Tinelli, C. (eds.) TACAS 2015. LNCS, vol. 9035, pp. 68–82. Springer, Heidelberg (2015). doi: 10.1007/978-3-662-46681-0_5 Google Scholar
  17. 17.
    Fainekos, G.E., Pappas, G.J.: Robustness of temporal logic specifications for continuous-time signals. Theor. Comput. Sci. 410, 4262–4291 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Fan, C., Duggirala, P.S., Mitra, S., Viswanathan, M.: Progress on powertrain verification challenge with C2E2. In: Workshop on Applied Verification for Continuous and Hybrid Systems (ARCH 2015) (2015)Google Scholar
  19. 19.
    Fan, C., Kapinski, J., Jin, X., Mitra, S.: Locally optimal reach set over-approximation for nonlinear systems. In: Proceedings of the 13th ACM-SIGBED International Conference on Embedded Software (EMSOFT), EMSOFT 2016, pp. 6:1–6:10. ACM, New York (2016)Google Scholar
  20. 20.
    Fan, C., Mitra, S.: Bounded verification with on-the-fly discrepancy computation. In: Finkbeiner, B., Pu, G., Zhang, L. (eds.) ATVA 2015. LNCS, vol. 9364, pp. 446–463. Springer, Cham (2015). doi: 10.1007/978-3-319-24953-7_32 CrossRefGoogle Scholar
  21. 21.
    Fan, C., Qi, B., Mitra, S., Viswanathan, M.: DRYVR: data-driven verification and compositional reasoning for automotive systems. arXiv preprint arXiv:1702.06902 (2017)
  22. 22.
    Fan, C., Qi, B., Mitra, S., Viswanathan, M., Duggirala, P.S.: Automatic reachability analysis for nonlinear hybrid models with C2E2. In: Chaudhuri, S., Farzan, A. (eds.) CAV 2016. LNCS, vol. 9779, pp. 531–538. Springer, Cham (2016). doi: 10.1007/978-3-319-41528-4_29 Google Scholar
  23. 23.
    Finley, T.: Python package PyGLPK.
  24. 24.
    Frehse, G.: PHAVer: algorithmic verification of hybrid systems past HyTech. In: Morari, M., Thiele, L. (eds.) HSCC 2005. LNCS, vol. 3414, pp. 258–273. Springer, Heidelberg (2005). doi: 10.1007/978-3-540-31954-2_17 CrossRefGoogle Scholar
  25. 25.
    Frehse, G., Le Guernic, C., Donzé, A., Cotton, S., Ray, R., Lebeltel, O., Ripado, R., Girard, A., Dang, T., Maler, O.: SpaceEx: scalable verification of hybrid systems. In: International Conference on Computer Aided Verification, pp. 379–395. Springer (2011)Google Scholar
  26. 26.
    Girard, A., Pappas, G.J.: Verification using simulation. In: Hespanha, J.P., Tiwari, A. (eds.) HSCC 2006. LNCS, vol. 3927, pp. 272–286. Springer, Heidelberg (2006). doi: 10.1007/11730637_22 CrossRefGoogle Scholar
  27. 27.
    Girard, A., Pola, G., Tabuada, P.: Approximately bisimilar symbolic models for incrementally stable switched systems. IEEE Trans. Autom. Contr. 55(1), 116–126 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  28. 28.
    Henzinger, T.A., Ho, P.-H.: HyTech: the cornell hybrid technology tool. In: Antsaklis, P., Kohn, W., Nerode, A., Sastry, S. (eds.) HS 1994. LNCS, vol. 999, pp. 265–293. Springer, Heidelberg (1995). doi: 10.1007/3-540-60472-3_14 CrossRefGoogle Scholar
  29. 29.
    Huang, Z., Fan, C., Mereacre, A., Mitra, S., Kwiatkowska, M.: Invariant verification of nonlinear hybrid automata networks of cardiac cells. In: Biere, A., Bloem, R. (eds.) CAV 2014. LNCS, vol. 8559, pp. 373–390. Springer, Cham (2014). doi: 10.1007/978-3-319-08867-9_25 Google Scholar
  30. 30.
    Jin, X., Deshmukh, J.V., Kapinski, J., Ueda, K., Butts, K.: Powertrain control verification benchmark. In: Proceedings of the 17th International Conference on Hybrid Systems: Computation and Control, pp. 253–262. ACM (2014)Google Scholar
  31. 31.
    Kanade, A., Alur, R., Ivančić, F., Ramesh, S., Sankaranarayanan, S., Shashidhar, K.C.: Generating and analyzing symbolic traces of Simulink/Stateflow models. In: Bouajjani, A., Maler, O. (eds.) CAV 2009. LNCS, vol. 5643, pp. 430–445. Springer, Heidelberg (2009). doi: 10.1007/978-3-642-02658-4_33 CrossRefGoogle Scholar
  32. 32.
    Kearns, M.J., Vazirani, U.V.: An Introduction to Computational Learning Theory. MIT Press, Cambridge (1994)Google Scholar
  33. 33.
    Kong, S., Gao, S., Chen, W., Clarke, E.: dReach: \(\delta \)-reachability analysis for hybrid systems. In: Baier, C., Tinelli, C. (eds.) TACAS 2015. LNCS, vol. 9035, pp. 200–205. Springer, Heidelberg (2015). doi: 10.1007/978-3-662-46681-0_15 Google Scholar
  34. 34.
    Mathworks: Modeling an Automatic Transmission and Controller.
  35. 35.
  36. 36.
    O’Kelly, M., Abbas, H., Gao, S., Shiraishi, S., Kato, S., Mangharam, R.: APEX: autonomous vehicle plan verification and execution (2016)Google Scholar
  37. 37.
    Ouaknine, J., Worrell, J.: On the language inclusion problem for timed automata: closing a decidability gap. In: Proceedings of the 19th Annual IEEE Symposium on Logic in Computer Science, pp. 54–63. IEEE (2004)Google Scholar
  38. 38.
    Roohi, N., Prabhakar, P., Viswanathan, M.: Hybridization based CEGAR for hybrid automata with affine dynamics. In: Chechik, M., Raskin, J.-F. (eds.) TACAS 2016. LNCS, vol. 9636, pp. 752–769. Springer, Heidelberg (2016). doi: 10.1007/978-3-662-49674-9_48 CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Chuchu Fan
    • 1
    Email author
  • Bolun Qi
    • 1
  • Sayan Mitra
    • 1
  • Mahesh Viswanathan
    • 1
  1. 1.University of Illinois at Urbana-ChampaignChampaignUSA

Personalised recommendations