What Lies Beneath: Root-Associated Bacteria to Improve the Growth and Health of Olive Trees

  • David Ruano-Rosa
  • Antonio Valverde-Corredor
  • Carmen Gómez-Lama Cabanás
  • Rafael Sesmero
  • Jesús Mercado-BlancoEmail author
Conference paper
Part of the Sustainability in Plant and Crop Protection book series (SUPP)


During the last decades we have witnessed growing public concern on the abuse/misuse of agrochemicals to control plant pathogens. The fact that some relevant phytopathogens (for instance, the soil-borne fungus Verticillium dahliae Kleb.) are very difficult to control by methods alternative to chemical-based products, has urged researchers to seek effective measures within integrated disease management frameworks. Biological control, alone or in combination with other approaches, emerges as one of the most promising alternatives to confront plant pathogens in a sustainable, environment-friendly strategy. Effectiveness of biological control agents (BCA) largely depends on colonization and persistence capabilities in the ecological niches (e.g. root and/or rhizosphere) where their benefits are expected to be deployed. As a consequence, due to BCA-host specificity (or co-adaptation) the search of potential BCAs in their target environments seems an appropriate strategy. This chapter describes the isolation, identification and characterization of indigenous antagonist bacteria from the olive rhizosphere that can be eventually exploited as BCA against relevant pathogens affecting this woody crop, with emphasis on V. dahliae. The approach here implemented could be of interest for other pathosystems involving trees and soil-borne pathogens.


Pseudomonas spp. Paenibacillus spp. Biological control Plant growth promoting rhizobacteria Verticillium dahliae Olive pathogens 



We are grateful to Drs. F. J. López-Escudero and A. Trapero (University of Córdoba, Spain), C. J. López-Herrera and E. Pérez-Artes (IAS-CSIC), C. Ramos (University of Málaga, Spain) and L. Ran (Agricultural University of Hebei, P.R. China) for their gifts of plant pathogens used in this study. Supported by grants P12-AGR667 (Junta de Andalucía, Spain) and RECUPERA 2020 (MINECO-CSIC agreement), both co-funded by ERDF from the EU.


  1. Ajit, N. S., Verma, R., & Shanmugam, V. (2006). Extracellular chitinases of fluorescent pseudomonads antifungal to Fusarium oxysporum f. sp. dianthi causing carnation wilt. Current Microbiology, 52, 310–316.CrossRefPubMedGoogle Scholar
  2. Aleandri, M. P., Chilosi, G., Bruni, N., Tomassini, A., Vettraino, A. M., & Vannini, A. (2015). Use of nursery potting mixes amended with local Trichoderma strains with multiple complementary mechanisms to control soil-borne diseases. Crop Protection, 67, 269–278.CrossRefGoogle Scholar
  3. Aranda, S., Montes-Borrego, M., Jiménez-Díaz, R. M., & Landa, B. B. (2011). Microbial communities associated with the root system of wild olives (Olea europaea L. subsp europaea var. sylvestris) are good reservoirs of bacteria with antagonistic potential against Verticillium dahliae. Plant and Soil, 343, 329–345.CrossRefGoogle Scholar
  4. Bhattacharyya, P. N., & Jha, D. K. (2012). Plant growth-promoting rhizobacteria (PGPR): Emergence in agriculture. World Journal of Microbiology and Biotechnology, 28, 1327–1350.CrossRefPubMedGoogle Scholar
  5. Borriss, R. (2015). Bacillus, a plant-beneficial bacterium. In Principles of Plant-Microbe Interactions (pp. 379–391). Cham: Springer.Google Scholar
  6. Bowman, S. M., & Free, S. J. (2006). The structure and synthesis of the fungal cell wall. Bioessays, 28, 799–808.CrossRefPubMedGoogle Scholar
  7. Bubici, G., & Cirulli, M. (2011). Verticillium wilt of olives. In Olive diseases and disorders (pp. 191–222). Kerala: Research Signpost.Google Scholar
  8. Bubici, G., & Cirulli, M. (2012). Control of Verticillium wilt of olive by resistant rootstocks. Plant Soil, 352, 363–376.CrossRefGoogle Scholar
  9. Carrero-Carrón, I., Trapero-Casas, J. L., Olivares-García, C., Monte, E., Hermosa, R., & Jiménez-Díaz, R. M. (2016). Trichoderma asperellum is effective for biocontrol of Verticillium wilt in olive caused by the defoliating pathotype of Verticillium dahliae. Crop Protection, 88, 45–52.CrossRefGoogle Scholar
  10. Cazorla, F. M., & Mercado-Blanco, J. (2016). Biological control of tree and woody plant diseases: an impossible task? BioControl, 61, 233–242.CrossRefGoogle Scholar
  11. Collado-Romero, M., Mercado-Blanco, J., Olivares-García, C., Valverde-Corredor, A., & Jiménez-Díaz, R. (2006). Molecular variability within and among Verticillium dahliae vegetative compatibility groups determined by fluorescent amplified fragment length polymorphism and polymerase chain reaction markers. Phytopathology, 96, 485–495.CrossRefPubMedGoogle Scholar
  12. FAOSTAT. (2016). Available online at:
  13. George, P., Gupta, A., Gopal, M., Thomas, L., & Thomas, G. V. (2013). Multifarious beneficial traits and plant growth promoting potential of Serratia marcescens KiSII and Enterobacter sp. RNF 267 isolated from the rhizosphere of coconut palms (Cocos nucifera L.) World Journal of Microbiology and Biotechnology, 29, 109–117.CrossRefPubMedGoogle Scholar
  14. Gómez-Lama Cabanás, C., Valverde-Corredor, A., & Pérez-Artes, E. (2012). Molecular analysis of Spanish populations of Fusarium oxysporum f. sp. dianthi demonstrates a high genetic diversity and identifies virulence groups in races 1 and 2 of the pathogen. European Journal of Plant Pathology, 132, 561–576.CrossRefGoogle Scholar
  15. Han, S. H., Lee, S. J., Moon, J. H., Park, K. H., Yang, K. Y., et al. (2006). GacS-dependent production of 2R, 3R-butanediol by Pseudomonas chlororaphis O6 is a major determinant for eliciting systemic resistance against Erwinia carotovora but not against Pseudomonas syringae pv. tabaci in tobacco. Molecular Plant-Microbe Interactions, 19, 924–930.CrossRefPubMedGoogle Scholar
  16. Handelsman, J., & Stabb, E. V. (1996). Biocontrol of soilborne plant pathogens. The Plant Cell, 8, 1855–1869.CrossRefPubMedPubMedCentralGoogle Scholar
  17. Hayat, R., Ahmed, I., & Sheirdil, R. A. (2012). An overview of plant growth promoting rhizobacteria (PGPR) for sustainable agriculture. In Crop Production for Agricultural Improvement (pp. 557–579). Dordrecht: Springer.CrossRefGoogle Scholar
  18. Höfte, M. (1993). Classes of microbial siderophores. In Iron chelation in plants and soil microorganisms (pp. 3–27). San Diego: Academic.CrossRefGoogle Scholar
  19. Holt, J. G., Krieg, N. R., Sneath, P. H. A., Staley, J. T., & Williams, S. T. (1994). In W. R. Hensyl (Ed.), Bergey’s manual of determinative bacteriology (9th ed., 1094 pp). Baltimore: Williams & Wilkins.Google Scholar
  20. Hong, C. E., Kwon, S. Y., & Park, J. M. (2016). Biocontrol activity of Paenibacillus polymyxa AC-1 against Pseudomonas syringae and its interaction with Arabidopsis thaliana. Microbiological Research, 185, 3–21.CrossRefGoogle Scholar
  21. Katznelson, H., & Bose, B. (1959). Metabolic activity and phosphate dissolving capability of bacterial isolates from wheat roots in the rhizosphere and non rhizosphere soil. Canadian Journal of Microbiology, 5, 79–85.CrossRefPubMedGoogle Scholar
  22. Knudsen, I. M. B., Hockenhull, J., Funck Jensen, D., Gerhardson, B., Hökeberg, M., et al. (1997). Selection of biological control agents for controlling soil and seed-borne diseases in the field. European Journal of Plant Pathology, 103, 775–784.CrossRefGoogle Scholar
  23. Kumar, A., Prakash, A., & Johri, B. N. (2011). Bacillus as PGPR in crop ecosystem. In Bacteria in agrobiology: Crop ecosystems (pp. 37–59). Berlin/Heidelberg: Springer.CrossRefGoogle Scholar
  24. Lal, S., & Tabacchioni, S. (2009). Ecology and biotechnological potential of Paenibacillus polymyxa: A minireview. Indian Journal of Microbiology, 49, 2–10.CrossRefPubMedPubMedCentralGoogle Scholar
  25. López-Escudero, F. J., & Mercado-Blanco, J. (2011). Verticillium wilt of olive: A case study to implement an integrated strategy to control a soil-borne pathogen. Plant Soil, 344, 1–50.CrossRefGoogle Scholar
  26. López-Herrera, C. J., & Zea-Bonilla, T. (2007). Effects of benomyl, carbendazim, fluazinam and thiophanate methyl on white root rot of avocado. Crop Protection, 26, 1186–1192.CrossRefGoogle Scholar
  27. Lugtenberg, B., & Kamilova, F. (2009). Plant-growth-promoting rhizobacteria. Annual Review of Microbiology, 63, 541–556.CrossRefPubMedGoogle Scholar
  28. Maldonado-González, M. M., Bakker, P. A. H. M., Prieto, P., & Mercado-Blanco, J. (2015a). Arabidopsis thaliana as a tool to identify traits involved in Verticillium dahliae biocontrol by the olive root endophyte Pseudomonas fluorescens PICF7. Frontiers in Microbiology, 6, 266.CrossRefPubMedPubMedCentralGoogle Scholar
  29. Maldonado-González, M. M., Schilirò, E., Prieto, P., & Mercado-Blanco, J. (2015b). Endophytic colonization and biocontrol performance of Pseudomonas fluorescens PICF7 in olive (Olea europaea L.) are determined neither by pyoverdine production nor swimming motility. Environmental Microbiology, 17, 3139–3153.CrossRefPubMedGoogle Scholar
  30. Markakis, E. A., Tjamos, S. E., Antoniou, P. P., Paplomatas, E. J., & Tjamos, E. C. (2016). Biological control of Verticillium wilt of olive by Paenibacillus alvei, strain K165. BioControl, 61, 293–303.CrossRefGoogle Scholar
  31. Marschner, P., Crowley, D., & Yang, C. H. (2004). Development of specific rhizosphere bacterial communities in relation to plant species, nutrition and soil type. Plant and Soil, 261, 199–208.CrossRefGoogle Scholar
  32. Mercado-Blanco, J. (2015). Pseudomonas strains that exert biocontrol of plant pathogens. In: Pseudomonas. Volume 7: New aspect of Pseudomonas biology (pp. 121–172). London: Springer.Google Scholar
  33. Mercado-Blanco, J., & Bakker, P. (2007). Interactions between plants and beneficial Pseudomonas spp.: Exploiting bacterial traits for crop protection. Antonie van Leeuwenhoek, 92, 367–389.CrossRefPubMedGoogle Scholar
  34. Mercado-Blanco, J., Rodríguez-Jurado, D., Hervás, A., & Jiménez-Díaz, R. M. (2004). Suppression of Verticillium wilt in olive planting stocks by root-associated fluorescent Pseudomonas spp. Biological Control, 30, 474–486.CrossRefGoogle Scholar
  35. Moral, J., Jurado, J., & Trapero, A. (2012). Effect of temperature and relative humidity on mycelial growth, conidial germination and fruit infection by Colletotrichum spp. causing olive anthracnose. IOBC-WPRS. Bulletin, 79, 14.Google Scholar
  36. Müller, H., Tejedor-González, E., Mercado-Blanco, J., Rodríguez-Jurado, D., Jiménez-Díaz, R. M., & Berg, G. (2007). Effect of the biological control strain Serratia plymuthica HRO-C48 on Verticillium wilt of olive trees cv. Arbequina. In: Fundamental and practical approaches to increase biocontrol efficacy. IOBC/wprs Bulletin, 30, 173–177.Google Scholar
  37. Murthy, N., & Bleakley, B. (2012). Simplified method of preparing colloidal chitin used for screening of chitinase-producing microorganisms. The Internet Journal of Microbiology 10, 2. Available online at:
  38. Naik, D. N., Wahidullah, S., & Meena, R. M. (2013). Attenuation of Pseudomonas aeruginosa virulence by marine invertebrate–derived Streptomyces sp. Letters in Applied Microbiology, 56, 197–207.CrossRefPubMedGoogle Scholar
  39. Pérez-Martínez, I., Rodríguez-Moreno, L., Matas, I. M., & Ramos, C. (2007). Strain selection and improvement of gene transfer for genetic manipulation of Pseudomonas savastanoi isolated from olive knots. Research in Microbiology, 158, 60–69.CrossRefPubMedGoogle Scholar
  40. Prieto, P., Navarro-Raya, C., Valverde-Corredor, A., Amyotte, S. G., Dobinson, K. F., & Mercado-Blanco, J. (2009). Colonization process of olive tissues by Verticillium dahliae and its in planta interaction with the biocontrol root endophyte Pseudomonas fluorescens PICF7. Microbial Biotechnology, 2, 499–511.CrossRefPubMedPubMedCentralGoogle Scholar
  41. Raza, W., Yuan, J., Ling, N., Huang, Q., & Shen, Q. (2015). Production of volatile organic compounds by an antagonistic strain Paenibacillus polymyxa WR-2 in the presence of root exudates and organic fertilizer and their antifungal activity against Fusarium oxysporum f. sp. niveum. Biological Control, 80, 89–95.CrossRefGoogle Scholar
  42. Ruano-Rosa, D., & López-Herrera, C. J. (2009). Evaluation of Trichoderma spp. as biocontrol agents against avocado white root rot. Biological Control, 51, 66–71.CrossRefGoogle Scholar
  43. Ruano-Rosa, D., & Mercado-Blanco, J. (2015). Combining biocontrol agents and organics amendments to manage soil-Borne phytopathogens. In Organic amendments and soil suppressiveness in plant disease management (pp. 457–478). Cham: Springer.Google Scholar
  44. Ruano-Rosa, D., Prieto, P., Rincón, A. M., Gómez-Rodríguez, M. V., Valderrama, R., et al. (2016). Fate of Trichoderma harzianum in the olive rhizosphere: Time course of the root colonization process and interaction with the fungal pathogen Verticillium dahliae. BioControl, 61, 269–282.CrossRefGoogle Scholar
  45. Rybakova, D., Cernava, T., Köberl, M., Liebminger, S., Etemadi, M., & Berg, G. (2016). Endophytes-assisted biocontrol: novel insights in ecology and the mode of action of Paenibacillus. Plant and Soil. doi: 10.1007/s11104-015-2526-1.
  46. Ryu, C. M., Farag, M. A., Pare, P., & Kloepper, J. W. (2005). Invisible signals from the underground: bacterial volatiles elicit plant growth promotion and induce systemic resistance. The Plant Pathology Journal, 21, 7–12.CrossRefGoogle Scholar
  47. Sanei, S. J., & Razavi, S. E. (2011). Suppression of Verticillium wilt of olive by Pseudomonas fluorescens. American Journal of Experimental Agriculture, 1, 294–305.CrossRefGoogle Scholar
  48. Santoyo, G., Orozco-Mosqueda, M. C., & Govindappa, M. (2012). Mechanisms of biocontrol and plant growth-promoting activity in soil bacterial species of Bacillus and Pseudomonas: A review. Biocontrol Science and Technology, 22, 855–872.CrossRefGoogle Scholar
  49. Schwyn, B., & Neilands, J. B. (1987). Universal chemical assay for the detection and determination of siderophores. Analytical Biochemistry, 160, 47–56.CrossRefPubMedGoogle Scholar
  50. Tjamos, E. C. (1993). Prospects and strategies in controlling Verticillium wilt of olive. Bulletin OEPP/EPPO, 23, 505–512.CrossRefGoogle Scholar
  51. Tsror, L. (2011). Epidemiology and control of Verticillium wilt on olive. Israel Journal of Plant Sciences, 59, 59–69.CrossRefGoogle Scholar
  52. Wang, S. L., Chao, C. H., Liang, T. W., & Chen, C. C. (2009). Purification and characterization of protease and chitinase from Bacillus cereus TKU006 and conversion of marine wastes by these enzymes. Marine Biotechnology, 11, 334–344.CrossRefPubMedGoogle Scholar
  53. Whipps, J. M. (2001). Microbial interactions and biocontrol in the rhizosphere. Journal of Experimental Botany, 52, 487–511.CrossRefPubMedGoogle Scholar
  54. Whipps, J. M., & Davies, K. G. (2000). Success in biological control of plant pathogens and nematodes by microorganisms. In Biological control: measures of success (pp. 231–270). Dordrecht: Springer.CrossRefGoogle Scholar
  55. Xu, S., & Kim, B. S. (2016). Evaluation of Paenibacillus polymyxa strain SC09-21 for biocontrol of Phytophthora blight and growth stimulation in pepper plants. Tropical Plant Pathology, 1–7.Google Scholar
  56. Yamamoto, S., & Harayama, S. (1995). PCR amplification and direct sequencing of gyrB genes with universal primers and their application to the detection and taxonomic analysis of Pseudomonas putida strains. Applied and Environmental Microbiology, 61, 1104–1109.PubMedPubMedCentralGoogle Scholar
  57. Yang, P., Sun, Z. X., Liu, S. Y., Lu, H. X., Zhou, Y., & Sun, M. (2013). Combining antagonistic endophytic bacteria in different growth stages of cotton for control of Verticillium wilt. Crop Protection, 47, 17–23.CrossRefGoogle Scholar
  58. Zheng, Y., Chen, F., & Wang, M. (2013). Use of Bacillus-based biocontrol agents for promoting plant growth and health. In Bacteria in Agrobiology: Disease Management (pp. 243–258). Berlin/Heidelberg: Springer.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • David Ruano-Rosa
    • 1
  • Antonio Valverde-Corredor
    • 1
  • Carmen Gómez-Lama Cabanás
    • 1
  • Rafael Sesmero
    • 1
  • Jesús Mercado-Blanco
    • 1
    Email author
  1. 1.Department of Crop ProtectionInstitute for Sustainable Agriculture (IAS), Agencia Estatal Consejo Superior de Investigaciones Científicas (CSIC)CórdobaSpain

Personalised recommendations