Skip to main content

Towards Integrated Understanding of the Rhizosphere Phenomenon as Ecological Driver: Can Rhizoculture Improve Agricultural and Forestry Systems?

  • Conference paper
  • First Online:
Soil Biological Communities and Ecosystem Resilience

Abstract

Agriculture and forestry traditionally focus on improving plant growth traits based on an anthropocentric point of view. This paradigm has led to global problems associated to soil overexploitation such as soil losses, reductions of the C stock in soils, and the generalized use of fertilizers, which particularly increases the costs of production and pollution treatment. This view may also have limited our understanding of mutualistic symbioses of plants and microorganisms assuming that the main role of non-photosynthetic symbionts is to mobilize the nutrients that are necessary for plant growth and development, and being plants the dominant agents of the symbiotic relationship. In response to these issues, this chapter offers an alternative approach taking advantage of the “rhizo-centric” point of view, where non-photosynthetic partners are the main protagonists in play; and secondly, it builds a multidisciplinary body of knowledge that could be called “rhizoculture”, which includes techniques focussing on the intensification of the development and activity of roots, mycorrhizae, and other symbiotic and free living rhizosphere organisms. In short, rhizoculture may lead to decrease plant production dependence on fertilization and provides other benefits to agriculture, forestry, and the environment. Within this conceptual framework, the first objective of this book chapter is to explore whether there is a “paradox of calcium salts” (i.e., Ca2+ and its salts are simultaneously nutrients, promoters, and stressors for the host plants) that would explain a dominance of mycorrhizal fungi over plants based on inducing a Ca(pH)–mediated chlorosis to the host plants. If this paradigm shifting hypothesis were finally fully verified, it would provide conceptual bases to reconsider our current technologies in agriculture and forestry by introducing the “rhizocultural” approach, based on the management of roots (introducing alternative cultural practices), Ca2+ salts (using liming and other techniques), rock-eating mycorrhizae, organic matter, and the soil microbiome (increasing the presence of symbiotic microorganisms against saprophytes), N and P contents (by aquaculture and smart recycling of organic waste), and the physical properties of the soil (by the activity of soil symbiotic microorganisms and soil fauna, such as ants, termites and earthworms). The development of such new technological approaches in rhizoculture would significantly decrease the high cost and associated pollution of the application of fertilizers and phytochemicals; as well as it would increase soil C stocks, improve the resilience of agricultural and forest systems to environmental disturbances, such as climate change, and enhance food production and security.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adesemoye, A. O., & Kloepper, J. W. (2009). Plant-microbes interactions in enhaced fertilizer-use efficiency. Applied Microbiology and Biotechnology, 85, 1–12.

    Article  CAS  PubMed  Google Scholar 

  • Akeem, G. (2012). Biodiversity, conservation and utilization in a diverse world. Rijeka: Intech.

    Google Scholar 

  • Andersen, M. M., Landes, X., Xiang, W., Anyshchenko, A., Falhof, J., et al. (2015). Feasibility of new breeding techniques for organic farming. Trends in Plant Science, 20, 426–434.

    Article  CAS  PubMed  Google Scholar 

  • Augé, R. M. (2001). Water relations, drought and vesicular-arbuscular mycorrhizal symbiosis. Mycorrhiza, 11, 3–42.

    Article  Google Scholar 

  • Baron, L. C. (1985). Growing hazelnuts in Oregon. Oregon State University Extension Service Circular, 1219, 2–19.

    Google Scholar 

  • Baum, C., El-Tohamy, W., & Gruda, N. (2015). Increasing the productivity and product quality of vegetable crops using arbuscular mycorrhizal fungi: a review. Scientia Horticulturae, 187, 131–141.

    Article  Google Scholar 

  • Bektaş, N., Akbulut, H., Inan, H., & Dimoglo, A. (2004). Removal of phosphate from aqueous solutions by electro-coagulation. Journal of Hazardous Materials, 106, 101–105.

    Article  PubMed  CAS  Google Scholar 

  • Birhane, E., Sterck, F. J., Fetene, M., Bongers, F., & Kuyper, T. W. (2012). Arbuscular mycorrhizal fungi enhance photosynthesis, water use efficiency, and growth of frankincense seedlings under pulsed water availability conditions. Oecologia, 169, 895–904.

    Article  PubMed  PubMed Central  Google Scholar 

  • Borer, C. H., Schaberg, P. G., & DeHayes, D. H. (2005). Acidic mist reduces foliar membrane–associated calcium and impairs stomatal responsiveness in red spruce. Tree Physiology, 25, 673–680.

    Article  CAS  PubMed  Google Scholar 

  • BP. (2016). Statistical review of world energy. Available at https://www.bp.com/content/dam/bp/pdf/energy-economics/statistical-review-2016/bp-statistical-review-of-world-energy-2016-full-report.pdf.

  • Briones, M. J. I., Ostle, N. J., & Piearce, T. G. (2008a). Stable isotopes reveal that the calciferous gland of earthworms is a CO2–fixing organ. Soil Biology and Biochemistry, 40, 554–557.

    Article  CAS  Google Scholar 

  • Briones, M., López, E., Méndez, J., Rodríguez, J., & Gago-Duport, L. (2008b). Biological control over the formation and storage of amorphous calcium carbonate by earthworms. Mineralogical Magazine, 72, 227–231.

    Article  CAS  Google Scholar 

  • Callot, G., Byé, P., Raymond, M., Fernandez, D., Pargney, J. C., Parguez-Leduc, A., Janex-Favre, M. C., Moussa, R., & Pagès, L. (1999). La truffe, la terre, la vie (192 p). Paris: INRA Editions.

    Google Scholar 

  • Canti, M. (2007). Deposition and taphonomy of earthworm granules in relation to their interpretative potential in Quaternary stratigraphy. Journal of Quaternary Science, 22, 111–118.

    Article  Google Scholar 

  • Canti, M. (2009). Experiments on the origin of 13C in the calcium carbonate granules produced by the earthworm Lumbricus terrestris. Soil Biology and Biochemistry, 41, 2588–2592.

    Article  CAS  Google Scholar 

  • Canti, M. G., & Piearce, T. G. (2003). Morphology and dynamics of calcium carbonate granules produced by different earthworm species. Pedobiologia, 47, 511–521.

    Google Scholar 

  • Castrignano, A., Goovaerts, P., Lulli, L., & Bragato, G. (2000). A geostatistical approach to estimate probability of occurrence of Tuber melanosporum in relation to some soil properties. Geoderma, 98, 95–113.

    Article  Google Scholar 

  • Chan, K. (2003). Using earthworms to incorporate lime into subsoil to ameliorate acidity. Communications in Soil Science and Plant Analysis, 34, 985–997.

    Article  CAS  Google Scholar 

  • Cherubini, F., Peters, G. P., Berntsen, T., Strømman, A. H., & Hertwich, E. (2011). CO2 emissions from biomass combustion for bioenergy: atmospheric decay and contribution to global warming. Global Change Biology Bioenergy, 3, 413–426.

    Article  CAS  Google Scholar 

  • Clark, R., & Zeto, S. (1996). Growth and root colonization of mycorrhizal maize grown on acid and alkaline soil. Soil Biology and Biochemistry, 28, 1505–1511.

    Article  CAS  Google Scholar 

  • Coleman, D. C., Crossley, D., & Hendrix, P. F. (2004). Fundamentals of soil ecology. New York: Academic Press.

    Google Scholar 

  • Courty, P. E., Buée, M., Diedhiou, A. G., Frey-Klett, P., Le Tacon, F., et al. (2010). The role of ectomycorrhizal communities in forest ecosystem processes: new perspectives and emerging concepts. Soil Biology and Biochemistry, 42, 679–698.

    Article  CAS  Google Scholar 

  • Crannell, W. K., Tanaka, Y., & Myrold, D. D. (1994). Calcium and pH interaction on root nodulation of nursfry-grown red alder (Alnus rubra bong.) seedlings by Frankia. Soil Biology and Biochemistry, 26, 607–614.

    Article  CAS  Google Scholar 

  • Cromack, K., Sollins, P., Todd, R., Fogel, R., Todd, A., et al. (1977). The role of oxalic acid and bicarbonate in calcium cycling by fungi and bacteria: some possible implications for soil animals. Ecological Bulletins, 25, 246–252.

    CAS  Google Scholar 

  • Drioli, E., Stankiewicz, A. I., & Macedonio, F. (2011). Membrane engineering in process intensification—An overview. Journal of Membrane Science, 380, 1–8.

    Article  CAS  Google Scholar 

  • Epstein, E. (1972). Mineral nutrition of plants: principles and perspectives. New York: John Wiley and Sons Inc..

    Google Scholar 

  • Erisman, J. W., van Grinsven, H., Leip, A., Mosier, A., & Bleeker, A. (2010). Nitrogen and biofuels; an overview of the current state of knowledge. Nutrient Cycling in Agroecosystems, 86, 211–223.

    Article  CAS  Google Scholar 

  • Eurostat. (2015). Common agricultural policy context indicators 2014–2020. In European Union (Ed.), Statistical book on agriculture, forestry and fishery. Brussels: European Commission.

    Google Scholar 

  • Fan, J., McConkeya, B., Wanga, H., & Janzen, H. (2016). Root distribution by depth for temperate agricultural crops. Field Crops Research, 189, 68–74.

    Article  Google Scholar 

  • FAO. (2016). http://www.fao.org/

  • FAO. (2017). What is organic agriculture?. http://www.fao.org/organicag/oa-faq/oa-faq1/en/.

  • Farmer, B. H. (1986). Perspectives on the ‘Green Revolution’ in South Asia. Modern Asian Studies, 20, 175–199.

    Article  Google Scholar 

  • Fitter, A., & Garbaye, J. (1994). Interactions between mycorrhizal fungi and other soil organisms. Plant and Soil, 159, 123–132.

    Article  Google Scholar 

  • Fitter, A., & Sanders, I. (1992). Interactions with the soil fauna. In M. F. Allen (Ed.), Mycorrhizal Functioning (pp. 333–354). New York: Chapman and Hall.

    Google Scholar 

  • Fraser, A., Lambkin, D., Lee, M., Schofield, P., Mosselmans, J., & Hodson, M. (2011). Incorporation of lead into calcium carbonate granules secreted by earthworms living in lead contaminated soils. Geochimica et Cosmochimica Acta, 75, 2544–2556.

    Article  CAS  Google Scholar 

  • Freymann, B. P., Buitenwerf, R., Desouza, O., & Olff, H. (2008). The importance of termites (Isoptera) for the recycling of herbivore dung in tropical ecosystems: a review. European Journal of Entomology, 105, 165–173.

    Article  Google Scholar 

  • Gago-Duport, L., Briones, M., Rodríguez, J., & Covelo, B. (2008). Amorphous calcium carbonate biomineralization in the earthworm’s calciferous gland: pathways to the formation of crystalline phases. Journal of Structural Biology, 162, 422–435.

    Article  CAS  PubMed  Google Scholar 

  • García-Montero, L. G., Valverde-Asenjo, I., Díaz, P., Pascual, C., & Menta, C. (2008). New data on impact of earthworms activity on black truffle soils. In D. Donnini (Ed.), Proceedings of 3° Congresso Internazionale di Spoleto sul Tartufo (130 pp). Spoleto: Comunità Montana dei Monti Martani e del Serano.

    Google Scholar 

  • García-Montero, L. G., Quintana, A., Valverde-Asenjo, I., & Díaz, P. (2009). Calcareous amendments in truffle culture: A soil nutrition hypothesis. Soil Biology Biochemistry, 41, 1227–1232.

    Article  CAS  Google Scholar 

  • García-Montero, L. G., Valverde-Asenjo, I., Moreno, D., Díaz, P., Hernando, I., et al. (2012). Influence of edaphic factors on edible ectomycorrhizal mushrooms: new hypotheses on soil nutrition and C sinks associated to ectomycorrhizae and soil fauna using the Tuber brûlé model. In A. Zambonelli & G. M. Bonito (Eds.), Edible Ectomycorrhizal Mushrooms: Current Knowledge and Future Prospects (pp. 83–104). Berlin Heidelberg: Springer.

    Chapter  Google Scholar 

  • García-Montero, L. G., Valverde-Asenjo, I., Grande-Ortíz, M. A., Menta, C., & Hernando, I. (2013). Impact of earthworm casts on soil pH and calcium carbonate in black truffle burns. Agroforestry Systems, 87, 815–826.

    Article  Google Scholar 

  • García-Montero, L. G., García-Robredo, F., Ortuño, S., Ayuga, E., Pinto, L., et al. (2015a). Basis on rhizoculture: management of “underground agroforestry systems” to improve their climate change resilience. In E. Tielkes (Ed.), Tropentag 2015. Management of Land Use Systems for Enhaced Food Security: Conflicts, Controversies and Resolutions. Göttingen: Cuvillier Verlag. 330 pp.

    Google Scholar 

  • García-Montero, L. G., Monleon, V., Myrold, D., Kuyper, T. W., Trappe, J., et al. (2015b). Could mycorrhizae perform “ecosystem engineering” on the host plants? Basis on rhizoculture of agroforestry systems to improve their resilience. In: P. Grenni and A. Bevivino (Eds.), Soil biological communities and aboveground resilience. Proceedings of the 3rd Annual Meeting, Cost Action FP1305 “Biolink–Linking belowground biodiversity and ecosystem function in European forests”, Rome, p. 26. http://www.bio-link.eu/wp-content/uploads/2014/10/AbstractBook_Biolink_Rome2015.pdf

  • Gerbeau, P., Amodeo, G., Henzler, T., Santoni, V., Ripoche, P., & Maurel, C. (2002). The water permeability of Arabidopsis plasma membrane is regulated by divalent cations and pH. The Plant Journal, 30, 71–81.

    Article  CAS  PubMed  Google Scholar 

  • Gist, C. S., & Crossley, D. A. (1975). A model of mineral cycling for an arthropod foodweb in a Southeastern hardwood forest litter community. In F. G. Howell & M. H. Smith (Eds.), Mineral Cycling in Southeastern Ecosystems (pp. 84–106). Washington DC: ERDA Symposium Series.

    Google Scholar 

  • Guo, Y., Ni, Y., & Huang, J. (2010). Effects of rhizobium, arbuscular mycorrhiza and lime on nodulation, growth and nutrient uptake of lucerne in acid purplish soil in China. Tropical Grasslands, 44, 109–114.

    Google Scholar 

  • Guo, Y., Ni, Y., Raman, H., Wilson, B., Ash, G., et al. (2012). Arbuscular mycorrhizal fungal diversity in perennial pastures; responses to long-term lime application. Plant and Soil, 351, 389–403.

    Article  CAS  Google Scholar 

  • Halman, J. M., Schaberg, P. G., Hawley, G. J., & Eagar, C. (2008). Calcium addition at the Hubbard Brook Experimental Forest increases sugar storage, antioxidant activity and cold tolerance in native red spruce (Picea rubens). Tree Physiology, 28, 855–862.

    Article  CAS  PubMed  Google Scholar 

  • Halman, J. M., Schaberg, P. G., Hawley, G. J., Hansen, C. F., & Fahey, T. J. (2014). Differential impacts of calcium and aluminum treatments on sugar maple and American beech growth dynamics. Canadian Journal of Forest Research, 45, 52–59.

    Article  CAS  Google Scholar 

  • Hamilton, C. E., Bever, J. D., Labbé, J., Yang, X., & Yin, H. (2016). Mitigating climate change through managing constructed–microbial communities in agriculture. Agriculture, Ecosystems and Environment, 216, 304–308.

    Article  Google Scholar 

  • Hanlon, R., & Anderson, J. (1979). The effects of Collembola grazing on microbial activity in decomposing leaf litter. Oecologia, 38, 93–99.

    Article  CAS  PubMed  Google Scholar 

  • Hansen, B., Alrøe, H. F., & Kristensen, E. S. (2001). Approaches to assess the environmental impact of organic farming with particular regard to Denmark. Agriculture, Ecosystems and Environment, 83, 11–26.

    Article  Google Scholar 

  • Haynes, R. J., & Williams, P. H. (1993). Nutrient cycling and soil fertility in the grazed pasture ecosystem. Advances in Agronomy, 49, 119–199.

    Article  CAS  Google Scholar 

  • Helin, T., Sokka, L., Soimakallio, S., Pingoud, K., & Pajula, T. (2013). Approaches for inclusion of forest carbon cycle in life cycle assessment – a review. Global Change Biology Bioenergy, 5, 475–486.

    Article  CAS  Google Scholar 

  • Herbette, S., & Cochard, H. (2010). Calcium is a major determinant of xylem vulnerability to cavitation. Plant Physiology, 153, 1932–1939.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Herrera, P. M., Davies, J., & Manzano Baena, P. (2014). The Governance of Rangelands: Collective Action for Sustainable Pastoralism. London: Routledge.

    Google Scholar 

  • Huggett, B. A., Schaberg, P. G., Hawley, G. J., & Eagar, C. (2007). Long-term calcium addition increases growth release, wound closure, and health of sugar maple (Acer saccharum) trees at the Hubbard Brook Experimental Forest. Canadian Journal of Forest Research, 37, 1692–1700.

    Article  CAS  Google Scholar 

  • Huntington, T. (2005). Assessment of calcium status in Maine forests: review and future projection. Canadian Journal of Forest Research, 35, 1109–1121.

    Article  Google Scholar 

  • IEA. (2016). Key renewables trends statistics. International Energy Agency. Available at http://www.iea.org/publications/freepublications/publication/KeyRenewablesTrends.pdf

  • Jeon, W. T. (2006). Rice root distribution and rice-based cropping systems for sustainable soil rhizosphere management. In: International Workshop on Sustained Management of the Soil-Rhizosphere System for Efficient Crop Production and Fertilizer Use. Land Development Department, Bangkok.

    Google Scholar 

  • Johnson, D., Leake, J., & Read, D. (2005). Liming and nitrogen fertilization affects phosphatase activities, microbial biomass and mycorrhizal colonisation in upland grassland. Plant and Soil, 271, 157–164.

    Article  CAS  Google Scholar 

  • Jongmans, A., Pulleman, M., & Marinissen, J. (2001). Soil structure and earthworm activity in a marine silt loam under pasture versus arable land. Biology and Fertility of Soils, 33, 279–285.

    Article  CAS  Google Scholar 

  • Killham, K. (1994). Soil Ecology. Cambridge: Cambridge University Press.

    Google Scholar 

  • Kirk, G. J. D. (1994). Rice roots: nutrient and water use. Los Baños: International Rice Research Institute.

    Google Scholar 

  • Kluber, L. A., Tinnesand, K. M., Caldwell, B. A., Dunham, S. M., Yarwood, R. R., et al. (2010). Ectomycorrhizal mats alter forest soil biogeochemistry. Soil Biology and Biochemistry, 42, 1607–1613.

    Article  CAS  Google Scholar 

  • Kramer, P., & Boyer, J. (1995). Water relations of plants and soils. San Diego: Academic Press.

    Google Scholar 

  • Kumar, A., Choudhary, A. K., & Suri, V. (2016). Influence of AM fungi, inorganic phosphorus and irrigation regimes on plant water relations and soil physical properties in okra (Abelmoschus esculentus L.)–pea (Pisum sativum L.) cropping system in Himalayan acid alfisol. Journal of Plant Nutrition, 39, 666–682.

    Article  CAS  Google Scholar 

  • Lambkin, D. C., Gwilliam, K. H., Layton, C., Canti, M. G., Piearce, T. G., & Hodson, M. E. (2011). Production and dissolution rates of earthworm–secreted calcium carbonate. Pedobiologia, 54, S119–S129.

    Article  CAS  Google Scholar 

  • Laxminarayana, K. (2016). Response of mycorrhiza, organic sources, secondary and micro nutrients on soil microbial activities and yield performance of colocasia (Colocasia esculenta L.) in Alfisols. Communications in Soil Science and Plant Analysis, 47, 775–786.

    Article  CAS  Google Scholar 

  • Lee, M. R., Hodson, M. E., & Langworthy, G. (2008). Earthworms produce granules of intricately zoned calcite. Geology, 36, 943–946.

    Article  CAS  Google Scholar 

  • Littke, K., & Zabowski, D. (2007). Calcium uptake, partitioning, and sinuous growth in Douglas–fir seedlings. Forest Science, 53, 692–700.

    Google Scholar 

  • Long, S. P., Karp, A., Buckeridge, M. S., Davis, S. C., Jaiswal, D., et al. (2015). Feedstocks for Biofuels and Bioenergy. In: G. Mendes, R. L. Victoria, C. A. Joly, L. M. Verdade (Eds.), Bionergy sustainability: bridging the gaps. Scope 72, Sao Paulo.

    Google Scholar 

  • Lumaret, J. P., Kadiri, N., & Bertrand, M. (1992). Changes in resources: consequences for the dynamics of dung beetle communities. Journal of Applied Ecology, 29, 349–356.

    Article  Google Scholar 

  • Manzano, P. (2015). Transporte de semillas por las ovejas trashumantes, y sus potenciales implicaciones en la vegetación. PhD thesis, Universidad Autónoma de Madrid. Available at http://hdl. handle.net/10486/670899.

  • Manzano, P., Azcárate, F. M., Peco, B., & Malo, J. E. (2010). Are ecologists blind to small things? The missed stories on non–tropical seed predation on feces. Oikos, 119, 1537–1545.

    Article  Google Scholar 

  • Meier, M. S., Stoessel, F., Jungbluth, N., Juraske, R., Schader, C., & Stolze, M. (2015). Environmental impacts of organic and conventional agricultural products – Are the differences captured by life cycle assessment? Journal of Environmental Management, 149, 193–208.

    Article  PubMed  Google Scholar 

  • Mello, A., Ding, G. C., Piceno, Y. M., Napoli, C., Tom, L. M., et al. (2013). Truffle brûlé have an impact on the diversity of soil bacterial communities. PLoS One, 8, e61945.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mengel, K., & Kirkby, E. A. (2001). Principles of plant nutrition (Fifth ed.). Dordrecht: Kluwer Academic Publishers.

    Book  Google Scholar 

  • Menta, C., García-Montero, L. G., Pinto, S., Conti, F. D., Baroni, G., & Maresi, M. (2014). Does the natural “microcosm” created by Tuber aestivum affect soil microarthropods? A new hypothesis based on Collembola in truffle culture. Applied Soil Ecology, 84, 31–37.

    Article  Google Scholar 

  • Minocha, R., Long, S., Thangavel, P., Minocha, S. C., Eagar, C., & Driscoll, C. T. (2010). Elevation dependent sensitivity of northern hardwoods to Ca addition at Hubbard Brook Experimental Forest, NH, USA. Forest Ecology and Management, 260, 2115–2124.

    Article  Google Scholar 

  • Mollison, B., & Reney-Mia, S. (1991). Introduction to Permaculture. Sisters Creek: Tagari Publications.

    Google Scholar 

  • Monfort-Salvador, I., García-Montero, L. G., & Grande, M. A. (2015). Impact of calcium associated to calcareous amendments on ectomycorrhizae in forests: a review. Journal of Soil Science and Plant Nutrition, 15, 217–231.

    CAS  Google Scholar 

  • Moore, J. D., & Ouimet, R. (2010). Effects of two Ca fertilizer types on sugar maple vitality. Canadian Journal of Forest Research, 40, 1985–1992.

    Article  CAS  Google Scholar 

  • Morita, S., & Keisuke, N. (1995). Morphology and anatomy of rice roots with special reference to coordination in organo– and histogenesis. In F. Baluska, M. Ciamporova, O. Gasparíková, & P. W. Barlow (Eds.), Structure and Fuction of Roots (pp. 75–86). Dordrecht: Kluwer Academic Publisher.

    Chapter  Google Scholar 

  • Mosse, B. (1981). Vesicular–arbuscular mycorrhiza research for tropical agriculture. Research Bulletin of Hawaii Institute of Tropical Agriculture and Human Resources, 194, 82.

    Google Scholar 

  • Munns, D. (1986). Acid soil tolerance in legumes and rhizobia. Advances in Plant Nutrition, 2, 63–91.

    CAS  Google Scholar 

  • Murray, T. R., Frank, D. A., & Gehring, C. A. (2010). Ungulate and topographic control of arbuscular mycorrhizal fungal spore community composition in a temperate grassland. Ecology, 91, 815–827.

    Article  PubMed  Google Scholar 

  • Nara, K. (2008). Community developmental patterns and ecological functions of ectomycorrhizal fungi: implications from primary succession. In: A. Varma (ed.), Mycorrhiza: State of the Art, Genetics and Molecular Biology, Eco-Function, Biotechnology, Eco-Physiology, Structure and Systematics, Springer, Berlin/Heidelberg, 581–599.

    Google Scholar 

  • Newbould, P., & Rangeley, A. (1984). Effect of lime, phosphorus and mycorrhizal fungi on growth, nodulation and nitrogen fixation by white clover (Trifolium repens) grown in UK hill soils. In Biological Processes and Soil Fertility (pp. 105–114). Berlin/Heidelberg: Springer.

    Chapter  Google Scholar 

  • Norton, R. A., & Behan-Pelletier, V. M. (1991). Calcium carbonate and calcium oxalate as cuticular hardening agents in oribatid mites (Acari: Oribatida). Canadian Journal of Zoology, 69, 1504–1511.

    Article  Google Scholar 

  • Olsen, J. (2013). Nut Growers handbook. http://oregonhazelnuts.org/growerscorner/resources

  • Peleg, Z., Reguera, M., Tumimbang, E., Walia, H., & Blumwald, E. (2011). Cytokinin–mediated source/sink modifications improve drought tolerance and increase grain yield in rice under water–stress. Plant Biotechnology Journal, 9, 747–758.

    Article  CAS  PubMed  Google Scholar 

  • Phillips, R. P. (2007). Towards a rhizo–centric view of plant–microbial feedbacks under elevated atmospheric CO2. New Phytologist, 173, 661–663.

    Article  Google Scholar 

  • Plattner, I., & Hall, I. (1995). Parasitism of non–host plants by the mycorrhizal fungus Tuber melanosporum. Mycological research, 99, 1367–1370.

    Article  Google Scholar 

  • Querejeta, J. I., Barea, J. M., Allen, M. F., Caravaca, F., & Roldán, A. (2003). Differential response of δ13C and water use efficiency to arbuscular mycorrhizal infection in two aridland woody plant species. Oecologia, 135, 510–515.

    Article  PubMed  Google Scholar 

  • Redecker, D., von Berswordt-Wallrabe, P., Beck, D. P., & Werner, D. (1997). Influence of inoculation with arbuscular mycorrhizal fungi on stable isotopes of nitrogen in Phaseolus vulgaris. Biology and Fertility of Soils, 24, 344–346.

    Article  CAS  Google Scholar 

  • Ricard, J. M., Bergougnoux, F., Callot, R., Chevalier, G., Olivier, J., et al. (2003). La Truffe: Guide Technique de Trufficulture. Paris: Centre technique interprofessionnel des fruits et légumes.

    Google Scholar 

  • Rineau, F., & Garbaye, J. (2010). Effects of liming on potential oxalate secretion and iron chelation of beech ectomycorrhizal root tips. Microbial Ecology, 60, 331–339.

    Article  CAS  PubMed  Google Scholar 

  • Rineau, F., Maurice, J. P., Nys, C., Voiry, H., & Garbaye, J. (2010). Forest liming durably impact the communities of ectomycorrhizas and fungal epigeous fruiting bodies. Annals of Forest Science, 67, 110.

    Article  Google Scholar 

  • Rotheray, T. D., Chancellor, M., Jones, T. H., & Boddy, L. (2011). Grazing by collembola affects the outcome of interspecific mycelial interactions of cord–forming basidiomycetes. Fungal Ecology, 4, 42–55.

    Article  Google Scholar 

  • Rufino, M. C., Rowe, E. C., Delve, R. J., & Giller, K. E. (2006). Nitrogen cycling efficiencies through resource–poor African crop–livestock systems. Agriculture, Ecosystems and Environment, 112, 261–282.

    Article  Google Scholar 

  • Ruiz-Sánchez, M., Aroca, R., Muñoz, Y., Polón, R., & Ruiz-Lozano, J. M. (2010). The arbuscular mycorrhizal symbiosis enhances the photosynthetic efficiency and the antioxidative response of rice plants subjected to drought stress. Journal of Plant Physiology, 167, 862–869.

    Article  PubMed  CAS  Google Scholar 

  • Sastre, C. M., Carrasco, J., Barro, R., González-Arechavala, Y., Maletta, E., et al. (2016). Improving bioenergy sustainability evaluations by using soil nitrogen balance coupled with life cycle assessment: A case study for electricity generated from rye biomass. Applied Energy, 179, 847–863.

    Article  CAS  Google Scholar 

  • Schneider, J., Klauberg Filho, O., Fontoura, S., & Alves, M. V. (2011). Influência de diferentes sistemas de manejo e calagem em experimento de longa duração sobre fungos micorrízicos arbusculares. Ciência e Agrotecnologia, 35, 701–709.

    Article  Google Scholar 

  • Shah, Z., Adamst, W., & Haven, C. (1990). Composition and activity of the microbial population in an acidic upland soil and effects of liming. Soil Biology and Biochemistry, 22, 257–263.

    Article  Google Scholar 

  • Shamshiri, M., Usha, K., & Singh, B. (2006). Carbon–isotope discrimination, water use efficiency, net photosynthesis and transpiration in mycorrhizal kinnow (Citrus Nobilis × C. Deliciosa) plants. In M. Lee (Ed.), Proceedings of the XXVII International Horticultural Congress on Global Horticulture: Diversity and Harmony (pp. 261–265). Leuven: International Society for Horticultural Science.

    Google Scholar 

  • Smith, S. E., & Read, D. J. (2008). Mycorrhizal symbiosis (Third ed.). London: Academic press.

    Google Scholar 

  • Smith, F. A., Doughty, C. E., Malhi, Y., Svenning, J. C., & Terborgh, J. (2015). Megafauna in the Earth system. Ecography, 38, 1–10.

    Article  Google Scholar 

  • Sparling, G., & Tinker, P. (1978). Mycorrhizal infection in Pennine grassland. I. Levels of infection in the field. Journal of Applied Ecology, 15, 943–950.

    Google Scholar 

  • Taiz, L., & Zeiger, E. (2015). Plant physiology and development (Sixth ed.). Sunderland: Sinauer Associates Inc..

    Google Scholar 

  • Te Pas, C. M., & Rees, R. M. (2014). Analysis of differences in productivity, profitability and soil fertility between organic and conventional cropping systems in the tropics and sub–tropics. Journal of Integrative Agriculture, 13, 2299–2310.

    Article  Google Scholar 

  • Teillard, F., Anton, A., Dumont, B., Finn, J., Henry, B., et al. (2015). A review of indicators and methods to assess biodiversity: application to livestock production at global scale. Rome: Livestock Environmental Assessment and Performance (LEAP) Partnership, FAO.

    Google Scholar 

  • Ting-Wu, L., Wu, F.-H., Wang, W.-H., Chen, J., Li, Z.-J., et al. (2011). Effects of calcium on seed germination, seedling growth and photosynthesis of six forest tree species under simulated acid rain. Tree Physiology, 31, 402–413.

    Article  CAS  Google Scholar 

  • Tournaire-Roux, C., Sutka, M., Javot, H., Gout, E., Gerbeau, P., et al. (2003). Cytosolic pH regulates root water transport during anoxic stress through gating of aquaporins. Nature, 425, 393–397.

    Article  CAS  PubMed  Google Scholar 

  • UNCTAD. (2016). Second generation biofuel markets: state of play, trade and developing country perspectives. United Nations Conference on Trade and Development. Available at http://unctad.org/en/Pages/Home.aspx

  • Van Voorthuizen, E. M., Zwijnenburg, A., & Wessling, M. (2005). Nutrient removal by NF and RO membranes in a decentralized sanitation system. Water Research, 39, 3657–3667.

    Article  PubMed  CAS  Google Scholar 

  • Veen, G. F., Olff, H., Duyts, H., & van der Putten, W. H. (2010). Vertebrate herbivores influence soil nematodes by modifying plant communities. Ecology, 91, 828–835.

    Article  CAS  PubMed  Google Scholar 

  • Verrecchia, E. P., Braissant, O., & Cailleau, G. (2006). The oxalate-carbonate pathway in soil carbon storage: the role of fungi and oxalotrophic bacteria. In G. M. Gadd (Ed.), Fungi in Biogeochemical Cycles (pp. 289–310). Cambridge: Cambridge University Press.

    Chapter  Google Scholar 

  • Versteegh, E. A., Black, S., & Hodson, M. E. (2014). Environmental controls on the production of calcium carbonate by earthworms. Soil Biology and Biochemistry, 70, 159–161.

    Article  CAS  Google Scholar 

  • Wąsik, E., Bohdziewicz, J., & Błaszczyk, M. (2001). Removal of nitrates from ground water by a hybrid process of biological denitrification and microfiltration membrane. Process Biochemistry, 37, 57–64.

    Article  Google Scholar 

  • Weaver, J. E. (1926). Root development of field crops. New York: McGrawhill Book Company, Inc..

    Google Scholar 

  • Weaver, J. E., & Bruner, W. E. (1927). Root development of vegetable crops. New York: McGraw-Hill Book Company, Inc..

    Google Scholar 

  • Wenhai, L., Phan, H. V., Xie, M., Hai, F. I., Price, W. E., et al. (2017). Osmotic versus conventional membrane bioreactors integrated with reverse osmosis for water reuse: Biological stability, membrane fouling, and contaminant removal. Water Research, 109, 122–134.

    Article  CAS  Google Scholar 

  • West, N. E. (1991). Nutrient cycling in soils of semiarid and arid regions. In J. Skujins (Ed.), Semiarid Lands and Deserts: Soil Resource and Reclamation (pp. 295–332). New York: Marcel Dekker.

    Google Scholar 

  • Wiecek, C., & Messenger, A. (1972). Calcite contributions by earthworms to forest soils in Northern Illinois. Soil Science Society of America Journal, 36, 478–480.

    Article  CAS  Google Scholar 

  • World Bank. (2016). http://www.worldbank.org/

  • Yang, H., Xu, J., Guo, Y., Koide, R. T., Dai, Y., et al. (2016). Predicting plant response to arbuscular mycorrhizas: the role of host functional traits. Fungal Ecology, 20, 79–83.

    Article  Google Scholar 

  • Yocum, W. W. (1937). Root development of young delicious apple trees as affected by soils and by cultural treatments. College of Agriculture University of Nebraska, Agricultural Experiment Station, Research Bulletin, 95, 2–55.

    Google Scholar 

  • Zhang, W., Hendrix, P. F., Dame, L. E., Burke, R. A., Wu, J., et al. (2013). Earthworms facilitate carbon sequestration through unequal amplification of carbon stabilization compared with mineralization. Nature Communications, 4, 2576.

    PubMed  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the following people for their corrections, suggestions and discussions on the concepts and models of Rhizoculture: Vicente Monleón, Dave Myrold, Thom Kuyper, Jim Trappe, José Miguel Barea, Domingo Moreno, John Baham, Jennifer Parke, Martin Lukac, Paola Grenni, Mauro Gamboni, Mike Castellano, Maribel Hernando, Francisco Pérez-Alfocea, Jesús Pastor, Miguel Quemada, Kira Hontoria, Rosa Mosquera, Marta Conde, Ana Rincón, José Luis Hernanz, Ruben Valbuena, Paloma Díaz, José Luis García-Manjón, Gabriel Moreno, Sergio Sánchez, Dan Luoma, Anssi Pekkarinen, Danilo Mollicone, Alfonso Sánchez-Paus, José Antonio Bonet, Dani Oliach, Conchi Azcón, Charles Lefevre, José Antonio Domínguez, Salvador Rivas-Martínez, Leo García Sancho, Aziz Türkoglu, Ayhan Oral, Susana Martín-Fernández, Eugenio Martínez-Falero, Antonio García-Abril, Ángel Martín, Fernando García-Robredo and Javi Rejos. Authors also acknowledge Pedro Cifuentes and Escuela Superior de Ingenieros de Montes, Forestal y del Medio Natural for their financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luis G. García-Montero .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

García-Montero, L.G. et al. (2017). Towards Integrated Understanding of the Rhizosphere Phenomenon as Ecological Driver: Can Rhizoculture Improve Agricultural and Forestry Systems?. In: Lukac, M., Grenni, P., Gamboni, M. (eds) Soil Biological Communities and Ecosystem Resilience. Sustainability in Plant and Crop Protection. Springer, Cham. https://doi.org/10.1007/978-3-319-63336-7_4

Download citation

Publish with us

Policies and ethics