Advertisement

Towards Integrated Understanding of the Rhizosphere Phenomenon as Ecological Driver: Can Rhizoculture Improve Agricultural and Forestry Systems?

  • Luis G. García-MonteroEmail author
  • Pablo Manzano
  • Deaa Alwanney
  • Inmaculada Valverde-Asenjo
  • Amaya Álvarez-Lafuente
  • Luis F. Benito-Matías
  • Xavier Parladé
  • Sigfredo Ortuño
  • Marcos Morcillo
  • Antonio Gascó
  • Carlos Calderón-Guerrero
  • Francisco Mauro
  • Mercedes Méndez
  • Alvaro Sánchez-Medina
  • María P. Andrés
  • José R. Quintana
  • Cristina Menta
  • Stefania Pinto
  • Liliana Pinto
  • Pilar Pita
  • Cafer Turkmen
  • Cristina Pascual
  • Esperanza Ayuga
  • Fernando Torrent
  • José C. Robredo
  • Pablo Martín-Ortega
  • Joan Pera
  • Luis Gómez
  • Gonzalo Almendros
  • Carlos Colinas
  • Eric P. Verrecchia
Conference paper
Part of the Sustainability in Plant and Crop Protection book series (SUPP)

Abstract

Agriculture and forestry traditionally focus on improving plant growth traits based on an anthropocentric point of view. This paradigm has led to global problems associated to soil overexploitation such as soil losses, reductions of the C stock in soils, and the generalized use of fertilizers, which particularly increases the costs of production and pollution treatment. This view may also have limited our understanding of mutualistic symbioses of plants and microorganisms assuming that the main role of non-photosynthetic symbionts is to mobilize the nutrients that are necessary for plant growth and development, and being plants the dominant agents of the symbiotic relationship. In response to these issues, this chapter offers an alternative approach taking advantage of the “rhizo-centric” point of view, where non-photosynthetic partners are the main protagonists in play; and secondly, it builds a multidisciplinary body of knowledge that could be called “rhizoculture”, which includes techniques focussing on the intensification of the development and activity of roots, mycorrhizae, and other symbiotic and free living rhizosphere organisms. In short, rhizoculture may lead to decrease plant production dependence on fertilization and provides other benefits to agriculture, forestry, and the environment. Within this conceptual framework, the first objective of this book chapter is to explore whether there is a “paradox of calcium salts” (i.e., Ca2+ and its salts are simultaneously nutrients, promoters, and stressors for the host plants) that would explain a dominance of mycorrhizal fungi over plants based on inducing a Ca(pH)–mediated chlorosis to the host plants. If this paradigm shifting hypothesis were finally fully verified, it would provide conceptual bases to reconsider our current technologies in agriculture and forestry by introducing the “rhizocultural” approach, based on the management of roots (introducing alternative cultural practices), Ca2+ salts (using liming and other techniques), rock-eating mycorrhizae, organic matter, and the soil microbiome (increasing the presence of symbiotic microorganisms against saprophytes), N and P contents (by aquaculture and smart recycling of organic waste), and the physical properties of the soil (by the activity of soil symbiotic microorganisms and soil fauna, such as ants, termites and earthworms). The development of such new technological approaches in rhizoculture would significantly decrease the high cost and associated pollution of the application of fertilizers and phytochemicals; as well as it would increase soil C stocks, improve the resilience of agricultural and forest systems to environmental disturbances, such as climate change, and enhance food production and security.

Keywords

Rhizoculture Rhizosphere Mycorrhizae N-fixing bacteria Soil fauna Agriculture Forestry 

Notes

Acknowledgements

The authors would like to thank the following people for their corrections, suggestions and discussions on the concepts and models of Rhizoculture: Vicente Monleón, Dave Myrold, Thom Kuyper, Jim Trappe, José Miguel Barea, Domingo Moreno, John Baham, Jennifer Parke, Martin Lukac, Paola Grenni, Mauro Gamboni, Mike Castellano, Maribel Hernando, Francisco Pérez-Alfocea, Jesús Pastor, Miguel Quemada, Kira Hontoria, Rosa Mosquera, Marta Conde, Ana Rincón, José Luis Hernanz, Ruben Valbuena, Paloma Díaz, José Luis García-Manjón, Gabriel Moreno, Sergio Sánchez, Dan Luoma, Anssi Pekkarinen, Danilo Mollicone, Alfonso Sánchez-Paus, José Antonio Bonet, Dani Oliach, Conchi Azcón, Charles Lefevre, José Antonio Domínguez, Salvador Rivas-Martínez, Leo García Sancho, Aziz Türkoglu, Ayhan Oral, Susana Martín-Fernández, Eugenio Martínez-Falero, Antonio García-Abril, Ángel Martín, Fernando García-Robredo and Javi Rejos. Authors also acknowledge Pedro Cifuentes and Escuela Superior de Ingenieros de Montes, Forestal y del Medio Natural for their financial support.

References

  1. Adesemoye, A. O., & Kloepper, J. W. (2009). Plant-microbes interactions in enhaced fertilizer-use efficiency. Applied Microbiology and Biotechnology, 85, 1–12.PubMedCrossRefGoogle Scholar
  2. Akeem, G. (2012). Biodiversity, conservation and utilization in a diverse world. Rijeka: Intech.Google Scholar
  3. Andersen, M. M., Landes, X., Xiang, W., Anyshchenko, A., Falhof, J., et al. (2015). Feasibility of new breeding techniques for organic farming. Trends in Plant Science, 20, 426–434.PubMedCrossRefGoogle Scholar
  4. Augé, R. M. (2001). Water relations, drought and vesicular-arbuscular mycorrhizal symbiosis. Mycorrhiza, 11, 3–42.CrossRefGoogle Scholar
  5. Baron, L. C. (1985). Growing hazelnuts in Oregon. Oregon State University Extension Service Circular, 1219, 2–19.Google Scholar
  6. Baum, C., El-Tohamy, W., & Gruda, N. (2015). Increasing the productivity and product quality of vegetable crops using arbuscular mycorrhizal fungi: a review. Scientia Horticulturae, 187, 131–141.CrossRefGoogle Scholar
  7. Bektaş, N., Akbulut, H., Inan, H., & Dimoglo, A. (2004). Removal of phosphate from aqueous solutions by electro-coagulation. Journal of Hazardous Materials, 106, 101–105.PubMedCrossRefGoogle Scholar
  8. Birhane, E., Sterck, F. J., Fetene, M., Bongers, F., & Kuyper, T. W. (2012). Arbuscular mycorrhizal fungi enhance photosynthesis, water use efficiency, and growth of frankincense seedlings under pulsed water availability conditions. Oecologia, 169, 895–904.PubMedPubMedCentralCrossRefGoogle Scholar
  9. Borer, C. H., Schaberg, P. G., & DeHayes, D. H. (2005). Acidic mist reduces foliar membrane–associated calcium and impairs stomatal responsiveness in red spruce. Tree Physiology, 25, 673–680.PubMedCrossRefGoogle Scholar
  10. Briones, M. J. I., Ostle, N. J., & Piearce, T. G. (2008a). Stable isotopes reveal that the calciferous gland of earthworms is a CO2–fixing organ. Soil Biology and Biochemistry, 40, 554–557.CrossRefGoogle Scholar
  11. Briones, M., López, E., Méndez, J., Rodríguez, J., & Gago-Duport, L. (2008b). Biological control over the formation and storage of amorphous calcium carbonate by earthworms. Mineralogical Magazine, 72, 227–231.CrossRefGoogle Scholar
  12. Callot, G., Byé, P., Raymond, M., Fernandez, D., Pargney, J. C., Parguez-Leduc, A., Janex-Favre, M. C., Moussa, R., & Pagès, L. (1999). La truffe, la terre, la vie (192 p). Paris: INRA Editions.Google Scholar
  13. Canti, M. (2007). Deposition and taphonomy of earthworm granules in relation to their interpretative potential in Quaternary stratigraphy. Journal of Quaternary Science, 22, 111–118.CrossRefGoogle Scholar
  14. Canti, M. (2009). Experiments on the origin of 13C in the calcium carbonate granules produced by the earthworm Lumbricus terrestris. Soil Biology and Biochemistry, 41, 2588–2592.CrossRefGoogle Scholar
  15. Canti, M. G., & Piearce, T. G. (2003). Morphology and dynamics of calcium carbonate granules produced by different earthworm species. Pedobiologia, 47, 511–521.Google Scholar
  16. Castrignano, A., Goovaerts, P., Lulli, L., & Bragato, G. (2000). A geostatistical approach to estimate probability of occurrence of Tuber melanosporum in relation to some soil properties. Geoderma, 98, 95–113.CrossRefGoogle Scholar
  17. Chan, K. (2003). Using earthworms to incorporate lime into subsoil to ameliorate acidity. Communications in Soil Science and Plant Analysis, 34, 985–997.CrossRefGoogle Scholar
  18. Cherubini, F., Peters, G. P., Berntsen, T., Strømman, A. H., & Hertwich, E. (2011). CO2 emissions from biomass combustion for bioenergy: atmospheric decay and contribution to global warming. Global Change Biology Bioenergy, 3, 413–426.CrossRefGoogle Scholar
  19. Clark, R., & Zeto, S. (1996). Growth and root colonization of mycorrhizal maize grown on acid and alkaline soil. Soil Biology and Biochemistry, 28, 1505–1511.CrossRefGoogle Scholar
  20. Coleman, D. C., Crossley, D., & Hendrix, P. F. (2004). Fundamentals of soil ecology. New York: Academic Press.Google Scholar
  21. Courty, P. E., Buée, M., Diedhiou, A. G., Frey-Klett, P., Le Tacon, F., et al. (2010). The role of ectomycorrhizal communities in forest ecosystem processes: new perspectives and emerging concepts. Soil Biology and Biochemistry, 42, 679–698.CrossRefGoogle Scholar
  22. Crannell, W. K., Tanaka, Y., & Myrold, D. D. (1994). Calcium and pH interaction on root nodulation of nursfry-grown red alder (Alnus rubra bong.) seedlings by Frankia. Soil Biology and Biochemistry, 26, 607–614.CrossRefGoogle Scholar
  23. Cromack, K., Sollins, P., Todd, R., Fogel, R., Todd, A., et al. (1977). The role of oxalic acid and bicarbonate in calcium cycling by fungi and bacteria: some possible implications for soil animals. Ecological Bulletins, 25, 246–252.Google Scholar
  24. Drioli, E., Stankiewicz, A. I., & Macedonio, F. (2011). Membrane engineering in process intensification—An overview. Journal of Membrane Science, 380, 1–8.CrossRefGoogle Scholar
  25. Epstein, E. (1972). Mineral nutrition of plants: principles and perspectives. New York: John Wiley and Sons Inc..Google Scholar
  26. Erisman, J. W., van Grinsven, H., Leip, A., Mosier, A., & Bleeker, A. (2010). Nitrogen and biofuels; an overview of the current state of knowledge. Nutrient Cycling in Agroecosystems, 86, 211–223.CrossRefGoogle Scholar
  27. Eurostat. (2015). Common agricultural policy context indicators 2014–2020. In European Union (Ed.), Statistical book on agriculture, forestry and fishery. Brussels: European Commission.Google Scholar
  28. Fan, J., McConkeya, B., Wanga, H., & Janzen, H. (2016). Root distribution by depth for temperate agricultural crops. Field Crops Research, 189, 68–74.CrossRefGoogle Scholar
  29. FAO. (2016). http://www.fao.org/
  30. FAO. (2017). What is organic agriculture?. http://www.fao.org/organicag/oa-faq/oa-faq1/en/.
  31. Farmer, B. H. (1986). Perspectives on the ‘Green Revolution’ in South Asia. Modern Asian Studies, 20, 175–199.CrossRefGoogle Scholar
  32. Fitter, A., & Garbaye, J. (1994). Interactions between mycorrhizal fungi and other soil organisms. Plant and Soil, 159, 123–132.CrossRefGoogle Scholar
  33. Fitter, A., & Sanders, I. (1992). Interactions with the soil fauna. In M. F. Allen (Ed.), Mycorrhizal Functioning (pp. 333–354). New York: Chapman and Hall.Google Scholar
  34. Fraser, A., Lambkin, D., Lee, M., Schofield, P., Mosselmans, J., & Hodson, M. (2011). Incorporation of lead into calcium carbonate granules secreted by earthworms living in lead contaminated soils. Geochimica et Cosmochimica Acta, 75, 2544–2556.CrossRefGoogle Scholar
  35. Freymann, B. P., Buitenwerf, R., Desouza, O., & Olff, H. (2008). The importance of termites (Isoptera) for the recycling of herbivore dung in tropical ecosystems: a review. European Journal of Entomology, 105, 165–173.CrossRefGoogle Scholar
  36. Gago-Duport, L., Briones, M., Rodríguez, J., & Covelo, B. (2008). Amorphous calcium carbonate biomineralization in the earthworm’s calciferous gland: pathways to the formation of crystalline phases. Journal of Structural Biology, 162, 422–435.PubMedCrossRefGoogle Scholar
  37. García-Montero, L. G., Valverde-Asenjo, I., Díaz, P., Pascual, C., & Menta, C. (2008). New data on impact of earthworms activity on black truffle soils. In D. Donnini (Ed.), Proceedings of 3° Congresso Internazionale di Spoleto sul Tartufo (130 pp). Spoleto: Comunità Montana dei Monti Martani e del Serano.Google Scholar
  38. García-Montero, L. G., Quintana, A., Valverde-Asenjo, I., & Díaz, P. (2009). Calcareous amendments in truffle culture: A soil nutrition hypothesis. Soil Biology Biochemistry, 41, 1227–1232.CrossRefGoogle Scholar
  39. García-Montero, L. G., Valverde-Asenjo, I., Moreno, D., Díaz, P., Hernando, I., et al. (2012). Influence of edaphic factors on edible ectomycorrhizal mushrooms: new hypotheses on soil nutrition and C sinks associated to ectomycorrhizae and soil fauna using the Tuber brûlé model. In A. Zambonelli & G. M. Bonito (Eds.), Edible Ectomycorrhizal Mushrooms: Current Knowledge and Future Prospects (pp. 83–104). Berlin Heidelberg: Springer.CrossRefGoogle Scholar
  40. García-Montero, L. G., Valverde-Asenjo, I., Grande-Ortíz, M. A., Menta, C., & Hernando, I. (2013). Impact of earthworm casts on soil pH and calcium carbonate in black truffle burns. Agroforestry Systems, 87, 815–826.CrossRefGoogle Scholar
  41. García-Montero, L. G., García-Robredo, F., Ortuño, S., Ayuga, E., Pinto, L., et al. (2015a). Basis on rhizoculture: management of “underground agroforestry systems” to improve their climate change resilience. In E. Tielkes (Ed.), Tropentag 2015. Management of Land Use Systems for Enhaced Food Security: Conflicts, Controversies and Resolutions. Göttingen: Cuvillier Verlag. 330 pp.Google Scholar
  42. García-Montero, L. G., Monleon, V., Myrold, D., Kuyper, T. W., Trappe, J., et al. (2015b). Could mycorrhizae perform “ecosystem engineering” on the host plants? Basis on rhizoculture of agroforestry systems to improve their resilience. In: P. Grenni and A. Bevivino (Eds.), Soil biological communities and aboveground resilience. Proceedings of the 3rd Annual Meeting, Cost Action FP1305 “Biolink–Linking belowground biodiversity and ecosystem function in European forests”, Rome, p. 26. http://www.bio-link.eu/wp-content/uploads/2014/10/AbstractBook_Biolink_Rome2015.pdf
  43. Gerbeau, P., Amodeo, G., Henzler, T., Santoni, V., Ripoche, P., & Maurel, C. (2002). The water permeability of Arabidopsis plasma membrane is regulated by divalent cations and pH. The Plant Journal, 30, 71–81.PubMedCrossRefGoogle Scholar
  44. Gist, C. S., & Crossley, D. A. (1975). A model of mineral cycling for an arthropod foodweb in a Southeastern hardwood forest litter community. In F. G. Howell & M. H. Smith (Eds.), Mineral Cycling in Southeastern Ecosystems (pp. 84–106). Washington DC: ERDA Symposium Series.Google Scholar
  45. Guo, Y., Ni, Y., & Huang, J. (2010). Effects of rhizobium, arbuscular mycorrhiza and lime on nodulation, growth and nutrient uptake of lucerne in acid purplish soil in China. Tropical Grasslands, 44, 109–114.Google Scholar
  46. Guo, Y., Ni, Y., Raman, H., Wilson, B., Ash, G., et al. (2012). Arbuscular mycorrhizal fungal diversity in perennial pastures; responses to long-term lime application. Plant and Soil, 351, 389–403.CrossRefGoogle Scholar
  47. Halman, J. M., Schaberg, P. G., Hawley, G. J., & Eagar, C. (2008). Calcium addition at the Hubbard Brook Experimental Forest increases sugar storage, antioxidant activity and cold tolerance in native red spruce (Picea rubens). Tree Physiology, 28, 855–862.PubMedCrossRefGoogle Scholar
  48. Halman, J. M., Schaberg, P. G., Hawley, G. J., Hansen, C. F., & Fahey, T. J. (2014). Differential impacts of calcium and aluminum treatments on sugar maple and American beech growth dynamics. Canadian Journal of Forest Research, 45, 52–59.CrossRefGoogle Scholar
  49. Hamilton, C. E., Bever, J. D., Labbé, J., Yang, X., & Yin, H. (2016). Mitigating climate change through managing constructed–microbial communities in agriculture. Agriculture, Ecosystems and Environment, 216, 304–308.CrossRefGoogle Scholar
  50. Hanlon, R., & Anderson, J. (1979). The effects of Collembola grazing on microbial activity in decomposing leaf litter. Oecologia, 38, 93–99.PubMedCrossRefGoogle Scholar
  51. Hansen, B., Alrøe, H. F., & Kristensen, E. S. (2001). Approaches to assess the environmental impact of organic farming with particular regard to Denmark. Agriculture, Ecosystems and Environment, 83, 11–26.CrossRefGoogle Scholar
  52. Haynes, R. J., & Williams, P. H. (1993). Nutrient cycling and soil fertility in the grazed pasture ecosystem. Advances in Agronomy, 49, 119–199.CrossRefGoogle Scholar
  53. Helin, T., Sokka, L., Soimakallio, S., Pingoud, K., & Pajula, T. (2013). Approaches for inclusion of forest carbon cycle in life cycle assessment – a review. Global Change Biology Bioenergy, 5, 475–486.CrossRefGoogle Scholar
  54. Herbette, S., & Cochard, H. (2010). Calcium is a major determinant of xylem vulnerability to cavitation. Plant Physiology, 153, 1932–1939.PubMedPubMedCentralCrossRefGoogle Scholar
  55. Herrera, P. M., Davies, J., & Manzano Baena, P. (2014). The Governance of Rangelands: Collective Action for Sustainable Pastoralism. London: Routledge.Google Scholar
  56. Huggett, B. A., Schaberg, P. G., Hawley, G. J., & Eagar, C. (2007). Long-term calcium addition increases growth release, wound closure, and health of sugar maple (Acer saccharum) trees at the Hubbard Brook Experimental Forest. Canadian Journal of Forest Research, 37, 1692–1700.CrossRefGoogle Scholar
  57. Huntington, T. (2005). Assessment of calcium status in Maine forests: review and future projection. Canadian Journal of Forest Research, 35, 1109–1121.CrossRefGoogle Scholar
  58. IEA. (2016). Key renewables trends statistics. International Energy Agency. Available at http://www.iea.org/publications/freepublications/publication/KeyRenewablesTrends.pdf
  59. Jeon, W. T. (2006). Rice root distribution and rice-based cropping systems for sustainable soil rhizosphere management. In: International Workshop on Sustained Management of the Soil-Rhizosphere System for Efficient Crop Production and Fertilizer Use. Land Development Department, Bangkok.Google Scholar
  60. Johnson, D., Leake, J., & Read, D. (2005). Liming and nitrogen fertilization affects phosphatase activities, microbial biomass and mycorrhizal colonisation in upland grassland. Plant and Soil, 271, 157–164.CrossRefGoogle Scholar
  61. Jongmans, A., Pulleman, M., & Marinissen, J. (2001). Soil structure and earthworm activity in a marine silt loam under pasture versus arable land. Biology and Fertility of Soils, 33, 279–285.CrossRefGoogle Scholar
  62. Killham, K. (1994). Soil Ecology. Cambridge: Cambridge University Press.Google Scholar
  63. Kirk, G. J. D. (1994). Rice roots: nutrient and water use. Los Baños: International Rice Research Institute.Google Scholar
  64. Kluber, L. A., Tinnesand, K. M., Caldwell, B. A., Dunham, S. M., Yarwood, R. R., et al. (2010). Ectomycorrhizal mats alter forest soil biogeochemistry. Soil Biology and Biochemistry, 42, 1607–1613.CrossRefGoogle Scholar
  65. Kramer, P., & Boyer, J. (1995). Water relations of plants and soils. San Diego: Academic Press.Google Scholar
  66. Kumar, A., Choudhary, A. K., & Suri, V. (2016). Influence of AM fungi, inorganic phosphorus and irrigation regimes on plant water relations and soil physical properties in okra (Abelmoschus esculentus L.)–pea (Pisum sativum L.) cropping system in Himalayan acid alfisol. Journal of Plant Nutrition, 39, 666–682.CrossRefGoogle Scholar
  67. Lambkin, D. C., Gwilliam, K. H., Layton, C., Canti, M. G., Piearce, T. G., & Hodson, M. E. (2011). Production and dissolution rates of earthworm–secreted calcium carbonate. Pedobiologia, 54, S119–S129.CrossRefGoogle Scholar
  68. Laxminarayana, K. (2016). Response of mycorrhiza, organic sources, secondary and micro nutrients on soil microbial activities and yield performance of colocasia (Colocasia esculenta L.) in Alfisols. Communications in Soil Science and Plant Analysis, 47, 775–786.CrossRefGoogle Scholar
  69. Lee, M. R., Hodson, M. E., & Langworthy, G. (2008). Earthworms produce granules of intricately zoned calcite. Geology, 36, 943–946.CrossRefGoogle Scholar
  70. Littke, K., & Zabowski, D. (2007). Calcium uptake, partitioning, and sinuous growth in Douglas–fir seedlings. Forest Science, 53, 692–700.Google Scholar
  71. Long, S. P., Karp, A., Buckeridge, M. S., Davis, S. C., Jaiswal, D., et al. (2015). Feedstocks for Biofuels and Bioenergy. In: G. Mendes, R. L. Victoria, C. A. Joly, L. M. Verdade (Eds.), Bionergy sustainability: bridging the gaps. Scope 72, Sao Paulo.Google Scholar
  72. Lumaret, J. P., Kadiri, N., & Bertrand, M. (1992). Changes in resources: consequences for the dynamics of dung beetle communities. Journal of Applied Ecology, 29, 349–356.CrossRefGoogle Scholar
  73. Manzano, P. (2015). Transporte de semillas por las ovejas trashumantes, y sus potenciales implicaciones en la vegetación. PhD thesis, Universidad Autónoma de Madrid. Available at http://hdl. handle.net/10486/670899.
  74. Manzano, P., Azcárate, F. M., Peco, B., & Malo, J. E. (2010). Are ecologists blind to small things? The missed stories on non–tropical seed predation on feces. Oikos, 119, 1537–1545.CrossRefGoogle Scholar
  75. Meier, M. S., Stoessel, F., Jungbluth, N., Juraske, R., Schader, C., & Stolze, M. (2015). Environmental impacts of organic and conventional agricultural products – Are the differences captured by life cycle assessment? Journal of Environmental Management, 149, 193–208.PubMedCrossRefGoogle Scholar
  76. Mello, A., Ding, G. C., Piceno, Y. M., Napoli, C., Tom, L. M., et al. (2013). Truffle brûlé have an impact on the diversity of soil bacterial communities. PLoS One, 8, e61945.PubMedPubMedCentralCrossRefGoogle Scholar
  77. Mengel, K., & Kirkby, E. A. (2001). Principles of plant nutrition (Fifth ed.). Dordrecht: Kluwer Academic Publishers.CrossRefGoogle Scholar
  78. Menta, C., García-Montero, L. G., Pinto, S., Conti, F. D., Baroni, G., & Maresi, M. (2014). Does the natural “microcosm” created by Tuber aestivum affect soil microarthropods? A new hypothesis based on Collembola in truffle culture. Applied Soil Ecology, 84, 31–37.CrossRefGoogle Scholar
  79. Minocha, R., Long, S., Thangavel, P., Minocha, S. C., Eagar, C., & Driscoll, C. T. (2010). Elevation dependent sensitivity of northern hardwoods to Ca addition at Hubbard Brook Experimental Forest, NH, USA. Forest Ecology and Management, 260, 2115–2124.CrossRefGoogle Scholar
  80. Mollison, B., & Reney-Mia, S. (1991). Introduction to Permaculture. Sisters Creek: Tagari Publications.Google Scholar
  81. Monfort-Salvador, I., García-Montero, L. G., & Grande, M. A. (2015). Impact of calcium associated to calcareous amendments on ectomycorrhizae in forests: a review. Journal of Soil Science and Plant Nutrition, 15, 217–231.Google Scholar
  82. Moore, J. D., & Ouimet, R. (2010). Effects of two Ca fertilizer types on sugar maple vitality. Canadian Journal of Forest Research, 40, 1985–1992.CrossRefGoogle Scholar
  83. Morita, S., & Keisuke, N. (1995). Morphology and anatomy of rice roots with special reference to coordination in organo– and histogenesis. In F. Baluska, M. Ciamporova, O. Gasparíková, & P. W. Barlow (Eds.), Structure and Fuction of Roots (pp. 75–86). Dordrecht: Kluwer Academic Publisher.CrossRefGoogle Scholar
  84. Mosse, B. (1981). Vesicular–arbuscular mycorrhiza research for tropical agriculture. Research Bulletin of Hawaii Institute of Tropical Agriculture and Human Resources, 194, 82.Google Scholar
  85. Munns, D. (1986). Acid soil tolerance in legumes and rhizobia. Advances in Plant Nutrition, 2, 63–91.Google Scholar
  86. Murray, T. R., Frank, D. A., & Gehring, C. A. (2010). Ungulate and topographic control of arbuscular mycorrhizal fungal spore community composition in a temperate grassland. Ecology, 91, 815–827.PubMedCrossRefGoogle Scholar
  87. Nara, K. (2008). Community developmental patterns and ecological functions of ectomycorrhizal fungi: implications from primary succession. In: A. Varma (ed.), Mycorrhiza: State of the Art, Genetics and Molecular Biology, Eco-Function, Biotechnology, Eco-Physiology, Structure and Systematics, Springer, Berlin/Heidelberg, 581–599.Google Scholar
  88. Newbould, P., & Rangeley, A. (1984). Effect of lime, phosphorus and mycorrhizal fungi on growth, nodulation and nitrogen fixation by white clover (Trifolium repens) grown in UK hill soils. In Biological Processes and Soil Fertility (pp. 105–114). Berlin/Heidelberg: Springer.CrossRefGoogle Scholar
  89. Norton, R. A., & Behan-Pelletier, V. M. (1991). Calcium carbonate and calcium oxalate as cuticular hardening agents in oribatid mites (Acari: Oribatida). Canadian Journal of Zoology, 69, 1504–1511.CrossRefGoogle Scholar
  90. Olsen, J. (2013). Nut Growers handbook. http://oregonhazelnuts.org/growerscorner/resources
  91. Peleg, Z., Reguera, M., Tumimbang, E., Walia, H., & Blumwald, E. (2011). Cytokinin–mediated source/sink modifications improve drought tolerance and increase grain yield in rice under water–stress. Plant Biotechnology Journal, 9, 747–758.PubMedCrossRefGoogle Scholar
  92. Phillips, R. P. (2007). Towards a rhizo–centric view of plant–microbial feedbacks under elevated atmospheric CO2. New Phytologist, 173, 661–663.CrossRefGoogle Scholar
  93. Plattner, I., & Hall, I. (1995). Parasitism of non–host plants by the mycorrhizal fungus Tuber melanosporum. Mycological research, 99, 1367–1370.CrossRefGoogle Scholar
  94. Querejeta, J. I., Barea, J. M., Allen, M. F., Caravaca, F., & Roldán, A. (2003). Differential response of δ13C and water use efficiency to arbuscular mycorrhizal infection in two aridland woody plant species. Oecologia, 135, 510–515.PubMedCrossRefGoogle Scholar
  95. Redecker, D., von Berswordt-Wallrabe, P., Beck, D. P., & Werner, D. (1997). Influence of inoculation with arbuscular mycorrhizal fungi on stable isotopes of nitrogen in Phaseolus vulgaris. Biology and Fertility of Soils, 24, 344–346.CrossRefGoogle Scholar
  96. Ricard, J. M., Bergougnoux, F., Callot, R., Chevalier, G., Olivier, J., et al. (2003). La Truffe: Guide Technique de Trufficulture. Paris: Centre technique interprofessionnel des fruits et légumes.Google Scholar
  97. Rineau, F., & Garbaye, J. (2010). Effects of liming on potential oxalate secretion and iron chelation of beech ectomycorrhizal root tips. Microbial Ecology, 60, 331–339.PubMedCrossRefGoogle Scholar
  98. Rineau, F., Maurice, J. P., Nys, C., Voiry, H., & Garbaye, J. (2010). Forest liming durably impact the communities of ectomycorrhizas and fungal epigeous fruiting bodies. Annals of Forest Science, 67, 110.CrossRefGoogle Scholar
  99. Rotheray, T. D., Chancellor, M., Jones, T. H., & Boddy, L. (2011). Grazing by collembola affects the outcome of interspecific mycelial interactions of cord–forming basidiomycetes. Fungal Ecology, 4, 42–55.CrossRefGoogle Scholar
  100. Rufino, M. C., Rowe, E. C., Delve, R. J., & Giller, K. E. (2006). Nitrogen cycling efficiencies through resource–poor African crop–livestock systems. Agriculture, Ecosystems and Environment, 112, 261–282.CrossRefGoogle Scholar
  101. Ruiz-Sánchez, M., Aroca, R., Muñoz, Y., Polón, R., & Ruiz-Lozano, J. M. (2010). The arbuscular mycorrhizal symbiosis enhances the photosynthetic efficiency and the antioxidative response of rice plants subjected to drought stress. Journal of Plant Physiology, 167, 862–869.PubMedCrossRefGoogle Scholar
  102. Sastre, C. M., Carrasco, J., Barro, R., González-Arechavala, Y., Maletta, E., et al. (2016). Improving bioenergy sustainability evaluations by using soil nitrogen balance coupled with life cycle assessment: A case study for electricity generated from rye biomass. Applied Energy, 179, 847–863.CrossRefGoogle Scholar
  103. Schneider, J., Klauberg Filho, O., Fontoura, S., & Alves, M. V. (2011). Influência de diferentes sistemas de manejo e calagem em experimento de longa duração sobre fungos micorrízicos arbusculares. Ciência e Agrotecnologia, 35, 701–709.CrossRefGoogle Scholar
  104. Shah, Z., Adamst, W., & Haven, C. (1990). Composition and activity of the microbial population in an acidic upland soil and effects of liming. Soil Biology and Biochemistry, 22, 257–263.CrossRefGoogle Scholar
  105. Shamshiri, M., Usha, K., & Singh, B. (2006). Carbon–isotope discrimination, water use efficiency, net photosynthesis and transpiration in mycorrhizal kinnow (Citrus Nobilis × C. Deliciosa) plants. In M. Lee (Ed.), Proceedings of the XXVII International Horticultural Congress on Global Horticulture: Diversity and Harmony (pp. 261–265). Leuven: International Society for Horticultural Science.Google Scholar
  106. Smith, S. E., & Read, D. J. (2008). Mycorrhizal symbiosis (Third ed.). London: Academic press.Google Scholar
  107. Smith, F. A., Doughty, C. E., Malhi, Y., Svenning, J. C., & Terborgh, J. (2015). Megafauna in the Earth system. Ecography, 38, 1–10.CrossRefGoogle Scholar
  108. Sparling, G., & Tinker, P. (1978). Mycorrhizal infection in Pennine grassland. I. Levels of infection in the field. Journal of Applied Ecology, 15, 943–950.Google Scholar
  109. Taiz, L., & Zeiger, E. (2015). Plant physiology and development (Sixth ed.). Sunderland: Sinauer Associates Inc..Google Scholar
  110. Te Pas, C. M., & Rees, R. M. (2014). Analysis of differences in productivity, profitability and soil fertility between organic and conventional cropping systems in the tropics and sub–tropics. Journal of Integrative Agriculture, 13, 2299–2310.CrossRefGoogle Scholar
  111. Teillard, F., Anton, A., Dumont, B., Finn, J., Henry, B., et al. (2015). A review of indicators and methods to assess biodiversity: application to livestock production at global scale. Rome: Livestock Environmental Assessment and Performance (LEAP) Partnership, FAO.Google Scholar
  112. Ting-Wu, L., Wu, F.-H., Wang, W.-H., Chen, J., Li, Z.-J., et al. (2011). Effects of calcium on seed germination, seedling growth and photosynthesis of six forest tree species under simulated acid rain. Tree Physiology, 31, 402–413.CrossRefGoogle Scholar
  113. Tournaire-Roux, C., Sutka, M., Javot, H., Gout, E., Gerbeau, P., et al. (2003). Cytosolic pH regulates root water transport during anoxic stress through gating of aquaporins. Nature, 425, 393–397.PubMedCrossRefGoogle Scholar
  114. UNCTAD. (2016). Second generation biofuel markets: state of play, trade and developing country perspectives. United Nations Conference on Trade and Development. Available at http://unctad.org/en/Pages/Home.aspx
  115. Van Voorthuizen, E. M., Zwijnenburg, A., & Wessling, M. (2005). Nutrient removal by NF and RO membranes in a decentralized sanitation system. Water Research, 39, 3657–3667.PubMedCrossRefGoogle Scholar
  116. Veen, G. F., Olff, H., Duyts, H., & van der Putten, W. H. (2010). Vertebrate herbivores influence soil nematodes by modifying plant communities. Ecology, 91, 828–835.PubMedCrossRefGoogle Scholar
  117. Verrecchia, E. P., Braissant, O., & Cailleau, G. (2006). The oxalate-carbonate pathway in soil carbon storage: the role of fungi and oxalotrophic bacteria. In G. M. Gadd (Ed.), Fungi in Biogeochemical Cycles (pp. 289–310). Cambridge: Cambridge University Press.CrossRefGoogle Scholar
  118. Versteegh, E. A., Black, S., & Hodson, M. E. (2014). Environmental controls on the production of calcium carbonate by earthworms. Soil Biology and Biochemistry, 70, 159–161.CrossRefGoogle Scholar
  119. Wąsik, E., Bohdziewicz, J., & Błaszczyk, M. (2001). Removal of nitrates from ground water by a hybrid process of biological denitrification and microfiltration membrane. Process Biochemistry, 37, 57–64.CrossRefGoogle Scholar
  120. Weaver, J. E. (1926). Root development of field crops. New York: McGrawhill Book Company, Inc..Google Scholar
  121. Weaver, J. E., & Bruner, W. E. (1927). Root development of vegetable crops. New York: McGraw-Hill Book Company, Inc..Google Scholar
  122. Wenhai, L., Phan, H. V., Xie, M., Hai, F. I., Price, W. E., et al. (2017). Osmotic versus conventional membrane bioreactors integrated with reverse osmosis for water reuse: Biological stability, membrane fouling, and contaminant removal. Water Research, 109, 122–134.CrossRefGoogle Scholar
  123. West, N. E. (1991). Nutrient cycling in soils of semiarid and arid regions. In J. Skujins (Ed.), Semiarid Lands and Deserts: Soil Resource and Reclamation (pp. 295–332). New York: Marcel Dekker.Google Scholar
  124. Wiecek, C., & Messenger, A. (1972). Calcite contributions by earthworms to forest soils in Northern Illinois. Soil Science Society of America Journal, 36, 478–480.CrossRefGoogle Scholar
  125. World Bank. (2016). http://www.worldbank.org/
  126. Yang, H., Xu, J., Guo, Y., Koide, R. T., Dai, Y., et al. (2016). Predicting plant response to arbuscular mycorrhizas: the role of host functional traits. Fungal Ecology, 20, 79–83.CrossRefGoogle Scholar
  127. Yocum, W. W. (1937). Root development of young delicious apple trees as affected by soils and by cultural treatments. College of Agriculture University of Nebraska, Agricultural Experiment Station, Research Bulletin, 95, 2–55.Google Scholar
  128. Zhang, W., Hendrix, P. F., Dame, L. E., Burke, R. A., Wu, J., et al. (2013). Earthworms facilitate carbon sequestration through unequal amplification of carbon stabilization compared with mineralization. Nature Communications, 4, 2576.PubMedGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Luis G. García-Montero
    • 1
    • 2
    • 3
    Email author
  • Pablo Manzano
    • 4
  • Deaa Alwanney
    • 1
    • 2
    • 3
  • Inmaculada Valverde-Asenjo
    • 5
  • Amaya Álvarez-Lafuente
    • 6
  • Luis F. Benito-Matías
    • 6
  • Xavier Parladé
    • 7
  • Sigfredo Ortuño
    • 1
    • 2
    • 3
  • Marcos Morcillo
    • 8
  • Antonio Gascó
    • 1
    • 2
    • 3
  • Carlos Calderón-Guerrero
    • 1
    • 2
    • 3
  • Francisco Mauro
    • 1
    • 2
    • 3
  • Mercedes Méndez
    • 1
    • 2
    • 3
  • Alvaro Sánchez-Medina
    • 1
    • 2
    • 3
  • María P. Andrés
    • 1
    • 2
    • 3
  • José R. Quintana
    • 5
  • Cristina Menta
    • 9
  • Stefania Pinto
    • 9
  • Liliana Pinto
    • 1
    • 2
    • 3
  • Pilar Pita
    • 1
    • 2
    • 3
  • Cafer Turkmen
    • 10
  • Cristina Pascual
    • 1
    • 2
    • 3
  • Esperanza Ayuga
    • 1
    • 2
    • 3
  • Fernando Torrent
    • 1
    • 2
    • 3
  • José C. Robredo
    • 1
    • 2
    • 3
  • Pablo Martín-Ortega
    • 1
    • 2
    • 3
  • Joan Pera
    • 7
  • Luis Gómez
    • 1
    • 2
    • 3
  • Gonzalo Almendros
    • 11
  • Carlos Colinas
    • 12
  • Eric P. Verrecchia
    • 13
  1. 1.Technical University of Madrid, ETSI MontesMadridSpain
  2. 2.University of LleidaLleidaSpain
  3. 3.University of LausanneLausanneSwitzerland
  4. 4.IUCN Commission for Ecosystem ManagementGlandSwitzerland
  5. 5.Complutense University of MadridMadridSpain
  6. 6.National Forest Genetic Resources Centre El SerranilloMadridSpain
  7. 7.IRTA, Sustainable Plant Protection Centre de CabrilsCabrilsSpain
  8. 8.Micología Forestal Aplicadac – Micofora, Sant Antoni De VilamajorBarcelonaSpain
  9. 9.Evolutionary and Functional Biology DepartmentUniversity of ParmaParmaItaly
  10. 10.Canakkale Onsekiz Mart UniversityCanakkaleTurkey
  11. 11.Spanish National Research Council (CSIC)MadridSpain
  12. 12.University of LleidaLleidaSpain
  13. 13.University of LausanneLausanneSwitzerland

Personalised recommendations