Advertisement

Ecosystem Services Provided By Soil Microorganisms

  • Maria Ludovica Saccá
  • Anna Barra Caracciolo
  • Martina Di Lenola
  • Paola GrenniEmail author
Conference paper
Part of the Sustainability in Plant and Crop Protection book series (SUPP)

Abstract

Ecosystem services are the contributions that ecosystems provide to human well-being. They arise from the interaction of biotic and abiotic processes, and refer specifically to the ‘final’ outputs or products from ecological systems. Soil harbours a large proportion of Earth's biodiversity, and provides the physical substrate for most human activities. Although soils have been widely studied and classified in terms of physical and chemical characteristics, knowledge of soil biodiversity and functioning are still incomplete. Soil organisms are extremely diverse and contribute to a wide range of ecosystem services that are essential to the sustainable functioning of natural and managed ecosystems. Microbial communities (mainly composed by Bacteria, Archaea and microfungi) are vital to soil ecosystem functioning. This is because they exist in enormous numbers and have an immense cumulative mass and activity. Most of the phenomena observed in the visible aboveground world are steered directly or indirectly by species, interactions, or processes in the belowground soil. In particular, being microbial communities involved in nutrient cycling and organic matter degradation, they can affect biodiversity and productivity of aboveground ecosystems. Microorganisms can have stimulating or inhibiting effects on plants by the release of metabolites with a varying range of activities. Microbial communities are the main responsible of soil homeostatic capabilities removing contaminants and providing key ecosystem regulating and supporting services such as soil fertility, resilience and resistance to different stress. This chapter aims at describing the contributions provided by soil microbial communities to different ecosystem services and their potential use as indicators of ecosystem functioning. Understanding ecosystem functioning and predicting responses to global changes calls for much better knowledge than we have today about microbial processes and interactions, including those with plants in the rhizosphere.

Keywords

Microbial functional groups Biodiversity Microbial populations Regulating and supporting services Soil homeostasis 

References

  1. Aislabie, J., & Deslippe, J. R. (2013). Soil microbes and their contribution to soil services (pp. 143–161). Lincoln: Manaaki Whenua Press, Landcare Research.Google Scholar
  2. Ali, S. Z., Sandhya, V., & Venkateswar Rao, L. (2014). Isolation and characterization of drought-tolerant ACC deaminase and exopolysaccharide-producing fluorescent Pseudomonas sp. Annals of Microbiology, 64, 493–502.CrossRefGoogle Scholar
  3. Amann, R., & Rosselló-Móra, R. (2016). After all, only millions? mBio, 7, e00999-16.Google Scholar
  4. Ancona, V., Barra Caracciolo, A., Grenni, P., Di Lenola, M., Campanale, C., Calabrese, A., Uricchio, V.F., Mascolo, G., & Massacci, A. (2016). Plant-assisted bioremediation of a historically PCB and heavy metal-contaminated area in Southern Italy. New Biotechnology. doi:http://doi.org/10.1016/j.nbt.2016.09.006.
  5. Baelum, J., Nicolaisen, M. H., Holben, W. E., Strobel, B. W., Sorensen, J., & Jacobsen, C. S. (2008). Direct analysis of tfdA gene expression by indigenous bacteria in phenoxy acid amended agricultural soil. The ISME Journal, 2, 677–687.CrossRefPubMedGoogle Scholar
  6. Bailey, V., Smith, J., & Bolton, H. (2002). Fungal-to-bacterial ratios in soils investigated for enhanced C sequestration. Soil Biology and Biochemistry, 34, 997–1007.CrossRefGoogle Scholar
  7. Bardgett, R. D., Freeman, C., & Ostle, N. J. (2008). Microbial contributions to climate change through carbon cycle feedbacks. The ISME Journal, 2, 805–814.CrossRefPubMedGoogle Scholar
  8. Barra Caracciolo, A., Grenni, P., Saccà, M. L., Falconi, F., Di Landa, G., & Ciccoli, R. (2007). The Role of the Bacterial Community of an Agroecosystem in Simazine Degradation. Italian Journal of Agronomy, 2, 163–169.CrossRefGoogle Scholar
  9. Barra Caracciolo, A., Bottoni, P., & Grenni, P. (2013). Microcosm studies to evaluate microbial potential to degrade pollutants in soil and water ecosystems. Microchemical Journal, 107, 126–130.CrossRefGoogle Scholar
  10. Bennett, L. T., Mele, P. M., Annett, S., & Kasel, S. (2010). Examining links between soil management, soil health, and public benefits in agricultural landscapes: An Australian perspective. Agriculture, Ecosystems and Environment, 139, 1–12.CrossRefGoogle Scholar
  11. Blaya, J., Marhuenda, F. C., Pascual, J. A., & Ros, M. (2016). Microbiota characterization of compost using omics approaches opens new perspectives for phytophthora root rot control. PLOS ONE, 11, e0158048.CrossRefPubMedPubMedCentralGoogle Scholar
  12. Boivin, M. E., Breure, A., Posthuma, L., & Rutgers, M. (2002). Determination of field effects of contaminants—significance of pollution-induced community tolerance. Human and Ecological Risk Assessment: An International Journal, 8, 1035–1055.CrossRefGoogle Scholar
  13. Bonilla, N., Gutiérrez-Barranquero, J., Vicente, A., & Cazorla, F. (2012). Enhancing Soil Quality and Plant Health Through Suppressive Organic Amendments. Diversity, 4, 475–491.CrossRefGoogle Scholar
  14. van Bruggen, A. H. C., & Semenov, A. M. (2000). In search of biological indicators for soil health and disease suppression. Applied Soil Ecology, 15, 13–24.CrossRefGoogle Scholar
  15. Cawoy, H., Bettiol, W., Fickers, P., & Ongena, M. (2011). Bacillus-based biological control of plant diseases. In: M. Stoytcheva (Ed), Pesticides in the modern world – Pesticides use and management (pp. 273–302). InTech. Available at http://www.intechopen.com/books/pesticides-in-themodern-world-pesticides-use-and-management/bacillus-based-biological-control-of-plant-diseases
  16. Cazorla, F. M., & Mercado-Blanco, J. (2016). Biological control of tree and woody plant diseases: an impossible task? BioControl, 61, 233–242.CrossRefGoogle Scholar
  17. CEC. (2006). Commission of the European Communities. COM(2006)231 final. Communication from the Commission to the Council, the European Parliament, the European Economic and Social Committee and the Committee of the Regions. In: Thematic strategy for soil protection (pp. 1–16). Brussels. Available at http://eur-lex.europa.eu/legal-content/EN/TXT/HTML/?uri=CELEX:52006DC0231&from=EN. Accessed April 2017.
  18. Ciancio, A., Pieterse, C. M. J., & Mercado-Blanco, J. (2016). Editorial: Harnessing Useful Rhizosphere Microorganisms for Pathogen and Pest Biocontrol. Frontiers in Microbiology, 7, 1620.CrossRefPubMedPubMedCentralGoogle Scholar
  19. Compant, S., Duffy, B., Nowak, J., Clement, C., & Barka, E. A. (2005). Use of plant growth-promoting bacteria for biocontrol of plant diseases: Principles, mechanisms of action, and future prospects. Applied and Environmental Microbiology, 71, 4951–4959.CrossRefPubMedPubMedCentralGoogle Scholar
  20. Costanza, R., d’Arge, R., de Groot, R., Farber, S., Grasso, M., Hannon, B., Limburg, K., Naeem, S., O’Neill, R. V., Paruelo, J., Raskin, R. G., Sutton, P., & van den Belt, M. (1997). The value of the world’s ecosystem services and natural capital. Nature, 387, 253–260.CrossRefGoogle Scholar
  21. De Roy, K., Marzorati, M., Negroni, A., Thas, O., Balloi, A., Fava, F., Verstraete, W., Daffonchio, D., & Boon, N. (2013). Environmental conditions and community evenness determine the outcome of biological invasion. Nature Communications, 4, 1383–1387.CrossRefPubMedGoogle Scholar
  22. Dennis, P., Edwards, E. A., Liss, S. N., & Fulthorpe, R. (2003). Monitoring gene expression in mixed microbial communities by using DNA microarrays. Applied and Environmental Microbiology, 69, 769–778.CrossRefPubMedPubMedCentralGoogle Scholar
  23. van Elsas, J. D., Costa, R., Jansson, J., Sjoling, S., Bailey, M., Nalin, R., Vogel, T. M., & van Overbeek, L. (2008). The metagenomics of disease suppressive soils – Experiences from the METACONTROL project. Trends in Biotechnology, 26, 591–601.CrossRefPubMedGoogle Scholar
  24. van Elsas, J. D., Chiurazzi, M., Mallon, C. A., Elhottovā, D., Krištůfek, V., & Salles, J. F. (2012). Microbial diversity determines the invasion of soil by a bacterial pathogen. Proceedings of the National Academy of Sciences, USA, 109, 1159–1164.CrossRefGoogle Scholar
  25. Dimkpa, C. O., Svatos, A., Dabrowska, P., Schmidt, A., Boland, W., & Kothe, E. (2008). Involvement of siderophores in the reduction of metal-induced inhibition of auxin synthesis in Streptomyces spp. Chemosphere, 74, 19–25.CrossRefPubMedGoogle Scholar
  26. Dimkpa, C., Weinand, T., & Asch, F. (2009). Plant-rhizobacteria interactions alleviate abiotic stress conditions. Plant, Cell and Environment, 32, 1682–1694.CrossRefPubMedGoogle Scholar
  27. Dominati, E., Patterson, M., & Mackay, A. (2010). A framework for classifying and quantifying the natural capital and ecosystem services of soils. Ecological Economics, 69, 1858–1868.CrossRefGoogle Scholar
  28. Doornbos, R. F., Loon, L. C., & Bakker, P. A. H. M. (2011). Impact of root exudates and plant defense signaling on bacterial communities in the rhizosphere. A review. Agronomy for Sustainable Development, 32, 227–243.CrossRefGoogle Scholar
  29. Doran, J. W., & Zeiss, M. R. (2000). Soil health and sustainability: managing the biotic component of soil quality. Applied Soil Ecology, 15, 3–11.CrossRefGoogle Scholar
  30. Drigo, B., Kowalchuk, G. A., Yergeau, E., Bezemer, T. M., Boschker, H. T. S., & Van Veen, J. A. (2007). Impact of elevated carbon dioxide on the rhizosphere communities of Carex arenaria and Festuca rubra. Global Change Biology, 13, 2396–2410.CrossRefGoogle Scholar
  31. Eyers, L., George, I., Schuler, L., Stenuit, B., Agathos, S. N., & El Fantroussi, S. (2004). Environmental genomics: Exploring the unmined richness of microbes to degrade xenobiotics. Applied Microbiology and Biotechnology, 66, 123–130.CrossRefPubMedGoogle Scholar
  32. Fajardo, C., Saccà, M. L., Gibello, A., Martinez-Inigo, M. J., Nande, M., Lobo, C., & Martin, M. (2012). Assessment of s-triazine catabolic potential in soil bacterial isolates applying atz genes as functional biomarkers. Water Air and Soil Pollution, 223, 3385–3392.CrossRefGoogle Scholar
  33. FAO and ITPS. 2015). Status of the World’s Soil Resources (SWSR). Main report. Food and Agriculture Organization of the United Nations and Intergovernmental Technical Panel on Soils, Rome, Italy, pp. 1–648. Available at http://www.fao.org/3/a-i5199e.pdf, Accessed April 2017.
  34. Fava, F., Bertin, L., Fedi, S., & Zannoni, D. (2003). Methyl-b-cyclodextrin-enhanced solubilization and aerobic biodegradation of polychlorinated biphenyls in two aged-contaminated soils. Biotechnology and Bioengineering, 81, 381–390.CrossRefPubMedGoogle Scholar
  35. Fierer, N., Grandy, A. S., Six, J., & Paul, E. A. (2009). Searching for unifying principles in soil ecology. Soil Biology and Biochemistry, 41, 2249–2256.CrossRefGoogle Scholar
  36. Floch, C., Chevremont, A. C., Joanico, K., Capowiez, Y., & Criquet, S. (2011). Indicators of pesticide contamination: Soil enzyme compared to functional diversity of bacterial communities via Biolog® Ecoplates. European Journal of Soil Biology, 47, 256–263.CrossRefGoogle Scholar
  37. Forni, C., Duca, D., & Glick, B. R. (2017). Mechanisms of plant response to salt and drought stress and their alteration by rhizobacteria. Plant and Soil, 410, 335–356.CrossRefGoogle Scholar
  38. Franchi, E., Agazzi, G., Rolli, E., Borin, S., Marasco, R., Chiaberge, S., Conte, A., Filtri, P., Pedron, F., Rosellini, I., Barbafieri, M., & Petruzzelli, G. (2016). Exploiting hydrocarbon-degrading indigenous bacteria for bioremediation and phytoremediation of a multicontaminated soil. Chemical Engineering and Technology, 39, 1676–1684.CrossRefGoogle Scholar
  39. Gomes, N. C., Kosheleva, I. A., Abraham, W. R., & Smalla, K. (2005). Effects of the inoculant strain Pseudomonas putida KT2442 (pNF142) and of naphthalene contamination on the soil bacterial community. FEMS Microbiology Ecology, 54, 21–33.CrossRefPubMedGoogle Scholar
  40. Graham, E. B., Knelman, J. E., Schindlbacher, A., Siciliano, S., Breulmann, M., Yannarell, A., Beman, J. M., Abell, G., Philippot, L., Prosser, J., Foulquier, A., Yuste, J. C., Glanville, H. C., Jones, D. L., Angel, R., Salminen, J., Newton, R. J., Bürgmann, H., Ingram, L. J., Hamer, U., Siljanen, H. M. P., Peltoniemi, K., Potthast, K., Bañeras, L., Hartmann, M., Banerjee, S., Yu, R.-Q., Nogaro, G., Richter, A., Koranda, M., Castle, S. C., Goberna, M., Song, B., Chatterjee, A., Nunes, O. C., Lopes, A. R., Cao, Y., Kaisermann, A., Hallin, S., Strickland, M. S., Garcia-Pausas, J., Barba, J., Kang, H., Isobe, K., Papaspyrou, S., Pastorelli, R., Lagomarsino, A., Lindström, E. S., Basiliko, N., Nemergut, D., & R. (2016). Microbes as engines of ecosystem function: When does community structure enhance predictions of ecosystem processes? Frontiers in Microbiology, 7, 1–10.Google Scholar
  41. Grenni, P., Gibello, A., Barra Caracciolo, A., Fajardo, C., Nande, M., Vargas, R., Saccà, M. L., Martinez-Iñigo, M. J., Ciccoli, R., & Martín, M. (2009a). A new fluorescent oligonucleotide probe for in situ detection of s-triazine-degrading Rhodococcus wratislaviensis in contaminated groundwater and soil samples. Water Research, 43, 2999–3008.CrossRefPubMedGoogle Scholar
  42. Grenni, P., Barra Caracciolo, A., Rodríguez-Cruz, M., & Sánchez-Martín, M. (2009b). Changes in the microbial activity in a soil amended with oak and pine residues and treated with linuron herbicide. Applied Soil Ecology, 41, 2–7.CrossRefGoogle Scholar
  43. Grenni, P., Rodríguez-Cruz, M. S., Herrero-Hernández, E., Marín-Benito, J. M., Sánchez-Martín, M. J., & Barra Caracciolo, A. (2012). Effects of wood amendments on the degradation of terbuthylazine and on soil microbial community activity in a clay loam soil. Water, Air, and Soil Pollution, 223, 5401–5412.CrossRefGoogle Scholar
  44. Griffiths, B. S., Bonkowski, M., Roy, J., & Ritz, K. (2001). Functional stability, substrate utilisation and biological indicators of soils following environmental impacts. Applied Soil Ecology, 16, 49–61.CrossRefGoogle Scholar
  45. Griffiths, B. S., Römbke, J., Schmelz, R. M., Scheffczyk, A., Faber, J. H., Bloem, J., Pérès, G., Cluzeau, D., Chabbi, A., Suhadolc, M., Sousa, J. P., Martins Da Silva, P., Carvalho, F., Mendes, S., Morais, P., Francisco, R., Pereira, C., Bonkowski, M., Geisen, S., Bardgett, R. D., De Vries, F. T., Bolger, T., Dirilgen, T., Schmidt, O., Winding, A., Hendriksen, N. B., Johansen, A., Philippot, L., Plassart, P., Bru, D., Thomson, B., Griffiths, R. I., Bailey, M. J., Keith, A., Rutgers, M., Mulder, C., Hannula, S. E., Creamer, R., & Stone, D. (2016). Selecting cost effective and policyrelevant biological indicators for European monitoring of soil biodiversity and ecosystem function. Ecological Indicators, 69, 213–223.CrossRefGoogle Scholar
  46. Haas, D., & Defago, G. (2005). Biological control of soil-borne pathogens by fluorescent pseudomonads. Nature Reviews Microbiology, 3, 307–319.CrossRefPubMedGoogle Scholar
  47. Haines-Young, R. (2016) Support to EEA tasks under the EU MAES process. Negotiated procedure No EEA/NSS/16/002. Report of Results of a Survey to Assess the Use of CICES, 2016 (Deliverable 2), pp. 1–22. Available at http://cices.eu/content/uploads/sites/8/2016/07/Report-on-Survey-Results_19072016_Upload.pdf, Accessed April 2017.
  48. Hartmann, A., Rothballer, M., & Schmid, M. (2008). Lorenz Hiltner, a pioneer in rhizosphere microbial ecology and soil bacteriology research. Plant and Soil, 312, 7–14.CrossRefGoogle Scholar
  49. Hashmi, M. Z., Qin, Z., Yao, X., Ahmed, Z., Xiaomei, S., Shen, C., & Tang, X. (2016). PCBs attenuation and abundance of Dehalococcoides spp., bphC, CheA, and flic genes in typical polychlorinated biphenyl-polluted soil under floody and dry soil conditions. Environmental Science and Pollution Research, 23, 3907–3913.CrossRefPubMedGoogle Scholar
  50. IPCC. (2014). Climate change 2014 synthesis report. In: R. K. Pachauri, & L. A. Meyer (Eds.), Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, Geneva, Switzerland, pp. 1–151.Google Scholar
  51. Kjellerup, B. V., Paul, P., Ghosh, U., May, H. D., & Sowers, K. R. (2012). Spatial distribution of PCB dechlorinating bacteria and activities in contaminated soil. Applied and Environmental Soil Science, 2012, 1–11.CrossRefGoogle Scholar
  52. La Notte, A., Maes, J., Dalmazzone, S., Crossman, N. D., Grizzetti, B., & Bidoglio, G. (2017). Physical and monetary ecosystem service accounts for Europe: A case study for in-stream nitrogen retention. Ecosystem Services, 23, 18–29.CrossRefPubMedPubMedCentralGoogle Scholar
  53. Lal, R. (2004). Soil carbon sequestration to mitigate climate change. Geoderma, 123, 1–22.CrossRefGoogle Scholar
  54. Lavelle, P., Decaëns, T., Aubert, M., Barot, S., Blouin, M., Bureau, F., Margerie, P., Mora, P., & Rossi, J.-P. (2006). Soil invertebrates and ecosystem services. European Journal of Soil Biology, 42, S3–S15.CrossRefGoogle Scholar
  55. Luo, W., D’Angelo, E. M., & Coyne, M. S. (2008). Organic carbon effects on aerobic polychlorinated biphenyl removal and bacterial community composition in soils and sediments. Chemosphere, 70, 364–373.CrossRefPubMedGoogle Scholar
  56. Maes. (2013). Mapping and assessment of ecosystems and their services. An analytical framework for ecosystem assessments under Action 5 of the EU Biodiversity Strategy to 2020, pp. 1–60.Google Scholar
  57. Marx, V. (2017). Microbiology: the return of culture. Nature Methods, 14, 37–40.CrossRefGoogle Scholar
  58. Mazzola, M. (2002). Mechanisms of natural soil suppressiveness to soilborne diseases. Antonie van Leeuwenhoek, 81, 557–564.CrossRefPubMedGoogle Scholar
  59. MEA (2005). Millennium ecosystem assessment – Ecosystems and human well-being: Synthesis, pp. 1–155. Available at http://www.millenniumassessment.org/documents/document.356.aspx.pdf. Accessed April 2017.
  60. Mendes, R., Kruijt, M., de Bruijn, I., Dekkers, E., van der Voort, M., Schneider, J. H., Piceno, Y. M., DeSantis, T. Z., Andersen, G. L., Bakker, P. A., & Raaijmakers, J. M. (2011). Deciphering the rhizosphere microbiome for disease-suppressive bacteria. Science, 332, 1097–1100.CrossRefPubMedGoogle Scholar
  61. Nardo, M., Saisana, M., Saltelli, A., Tarantola, S., Hoffman, A., Giovannini, E. (2005). Handbook on constructing composite indicators (pp. 1–162). Paris: OECD Publishing. Available at https://www.oecd.org/std/42495745.pdf. Accessed April 2017.
  62. Orgiazzi, A., Bardgett, R. D., Barrios, E., Behan-Pelletier, V., Briones, M. J. I., Chotte, J.- L., De Deyn, G. B., Eggleton, P., Fierer, N., Fraser, T., Hedlund, K., Jeffery, S., Johnson, N. C., Jones, A., Kandeler, E., Kaneko, N., Lavelle, P., Lemanceau, P., Miko, L., Montanarella, L., Moreira, F. M. S., Ramirez, K. S., Scheu, S., Singh, B. K., Six, J., van der Putten, W. H., & Wall, D. H. (2016) Global soil biodiversity atlas. Luxembourg: Publications Office of the European Union. Available at http://esdac.jrc.ec.europa.eu/content/global-soil-biodiversity-atlas. Accessed Apr 2017.
  63. Palaniyandi, S. A., Yang, S. H., Zhang, L., & Suh, J. W. (2013). Effects of actinobacteria on plant disease suppression and growth promotion. Applied Microbiology and Biotechnology, 97, 9621–9636.CrossRefPubMedGoogle Scholar
  64. Paul, D., Pandey, G., Meier, C., Roelof Van Der Meer, J., & Jain, R. K. (2006). Bacterial community structure of a pesticide-contaminated site and assessment of changes induced in community structure during bioremediation. FEMS Microbiology Ecology, 57, 116–127.CrossRefPubMedGoogle Scholar
  65. Philippot, L., Ritz, K., Pandard, P., Hallin, S., & Martin-Laurent, F. (2012). Standardisation of methods in soil microbiology: Progress and challenges. FEMS Microbiology Ecology, 82, 1–10.CrossRefPubMedGoogle Scholar
  66. Philippot, L., Raaijmakers, J. M., Lemanceau, P., & van der Putten, W. H. (2013). Going back to the roots: the microbial ecology of the rhizosphere. Nature Reviews Microbiology, 11, 789–799.CrossRefPubMedGoogle Scholar
  67. Pino, N., & Peñuela, G. (2011). Simultaneous degradation of the pesticides methyl parathion and chlorpyrifos by an isolated bacterial consortium from a contaminated site. International Biodeterioration and Biodegradation, 65, 827–831.CrossRefGoogle Scholar
  68. Pulleman, M. M., Creamer, R., Hamer, U., Helder, J., Pelosi, C., Pérès, G., & Rutgers, M. (2012). Soil biodiversity, biological indicators and soil ecosystem services—An overview of European approaches. Current Opinion in Environmental Sustainability, 4, 529–538.CrossRefGoogle Scholar
  69. Raaijmakers, J. M., Weller, D. M., & Thomashow, L. S. (1997). Frequency of antibiotic-producing Pseudomonas spp. in natural environments. Applied and Environmental Microbiology, 63, 881–887.PubMedPubMedCentralGoogle Scholar
  70. Reinhold-Hurek, B., Bünger, W., Burbano, C. S., Sabale, M., & Hurek, T. (2015). Roots shaping their microbiome: Global hotspots for microbial activity. Annual Review of Phytopathology, 53, 403–424.CrossRefPubMedGoogle Scholar
  71. Ritz, K., Black, H. I. J., Campbell, C. D., Harris, J. A., & Wood, C. (2009). Selecting biological indicators for monitoring soils: A framework for balancing scientific and technical opinion to assist policy development. Ecological Indicators, 9, 1212–1221.CrossRefGoogle Scholar
  72. Roesch, L. F., Fulthorpe, R. R., Riva, A., Casella, G., Hadwin, A. K., Kent, A. D., Daroub, S. H., Camargo, F. A., Farmerie, W. G., & Triplett, E. W. (2007). Pyrosequencing enumerates and contrasts soil microbial diversity. The ISME Journal, 1, 283–290. doi: 10.1038/ismej.2007.53.PubMedPubMedCentralGoogle Scholar
  73. Rutgers, M., van Wijnen, H. J., Schouten, A. J., Mulder, C., Kuiten, A. M. P., Brussaard, L., & Breure, A. M. (2012). A method to assess ecosystem services developed from soil attributes with stakeholders and data of four arable farms. Science of The Total Environment, 415, 39–48.CrossRefPubMedGoogle Scholar
  74. Schloss, P. D., Girard, R. A., Martin, T., Edwards, J., & Thrash, J. C. (2016) Status of the archaeal and bacterial census: an update. mBio, 7, e00201-16.Google Scholar
  75. Sipilä, T. P., Keskinen, A. K., Akerman, M. L., Fortelius, C., Haahtela, K., & Yrjälä, K. (2008). High aromatic ring-cleavage diversity in birch rhizosphere: PAH treatment-specific changes of I.E.3 group extradiol dioxygenases and 16S rRNA bacterial communities in soil. The ISME Journal, 2, 968–981.CrossRefPubMedGoogle Scholar
  76. Spohn, M. (2016). Element cycling as driven by stoichiometric homeostasis of soil microorganisms. Basic and Applied Ecology, 17, 471–478.CrossRefGoogle Scholar
  77. Thijs, S., Sillen, W., Rineau, F., Weyens, N., & Vangronsveld, J. (2016). Towards an enhanced understanding of plant-microbiome interactions to improve phytoremediation: Engineering the metaorganism. Frontiers in Microbiology, 7, 341.CrossRefPubMedPubMedCentralGoogle Scholar
  78. Turbé, A., De Toni, A., Benito, P., Lavelle, P. A., Lavelle, P. E., Ruiz, N., Van der Putten, W. H., Labouze, E., & Mudgal, S. (2010). Soil biodiversity: Functions, threaths and tools for policy makers. Bio Intelligence Service, IRD, and NIOO, Report for European Commission (DG Environment), 254 pp.Google Scholar
  79. US EPA. (1999). United States Environmental Protection Agency. Use of monitored natural attenuation at superfund, RCRA corrective action, and underground storage of tank sites. In: US Environmental Protection, Office of solid waste and emergency response. OSWER Directive 9200, 4–17. Available at https://www.epa.gov/sites/production/files/2014-02/documents/d9200.4-17.pdf. Accessed April 2017.
  80. Vida, C., Bonilla, N., De Vicente, A., & Cazorla, F. M. (2016). Microbial profiling of a suppressiveness-induced agricultural soil amended with composted almond shells. Frontiers in Microbiology, 7, 1–14.CrossRefGoogle Scholar
  81. Vogel, T. M., Simonet, P., Jansson, J. K., Hirsch, P. R., Tiedje, J. M., van Elsas, J. D., Bailey, M. J., Nalin, R., & Philippot, L. (2009). TerraGenome: A consortium for the sequencing of a soil metagenome. Nature Reviews Microbiology, 7, 252.CrossRefGoogle Scholar
  82. Wagg, C., Bender, S. F., Widmer, F., & van der Heijden, M. G. A. (2014). Soil biodiversity and soil community composition determine ecosystem multifunctionality. Proceedings of the National Academy of Sciences, USA, 111, 5266–5270.CrossRefGoogle Scholar
  83. Walthall, C. L., Hatfield, J., Backlund, P., Lengnick, L., Marshall, E., Walsh, M., Adkins, S., Aillery, M., Ainsworth, E.A., Ammann, C., Anderson, C.J., Bartomeus, I., Baumgard, L.H., Booker, F., Bradley, B., Blumenthal, D.M., Bunce, J., Burkey, K., Dabney, S. M., Delgado, J. A., Dukes, J., Funk, A., Garrett, K., Glenn, M., Grantz, D. A., Goodrich, D., Hu, S., Izaurralde, R. C., Jones R. A. C., Kim, S- H., Leaky, A. D. B., Lewers, K., Mader, T. L., McClung, A., Morgan, J., Muth, D. J., Nearing, M., Oosterhuis, D. M., Ort, D., Parmesan, C., Pettigrew, W. T., Polley, W., Rader, R., Rice, C., Rivington, M., Rosskopf, E., Salas, W. A., Sollenberger, L. E., Srygley, R., Stöckle, C., Takle, E. S., Timlin, D., White, J. W., Winfree, R., Wright-Morton, L., & Ziska, L. H. (2012). Climate change and agriculture in the United States: Effects and adaptation. USDA Technical Bulletin 1935. Washington, DC, pp. 1–186. Available at https://www.usda.gov/oce/climate_change/effects_2012/CC%20and%20Agriculture%20Report%20(02-04-2013)b.pdf. Accessed Apr 2017.
  84. Weller, D. M., Raaijmakers, J. M., Gardener, B. B. M., & Thomashow, L. S. (2002). Microbial populations responsible for specific soil suppressiveness to plant pathogens. Annual Review of Phytopathology, 40, 309–348.CrossRefPubMedGoogle Scholar
  85. Widder, S., Allen, R. J., Pfeiffer, T., Curtis, T. P., Wiuf, C., Sloan, W. T., Cordero, O. X., Brown, S. P., Momeni, B., Shou, W., Kettle, H., Flint, H. J., Haas, A. F., Laroche, B., Kreft, J. U., Rainey, P. B., Freilich, S., Schuster, S., Milferstedt, K., van der Meer, J. R., Groβ Kopf, T., Huisman, J., Free, A., Picioreanu, C., Quince, C., Klapper, I., Labarthe, S., Smets, B. F., Wang, H., Isaac Newton Institute Fellows, & Soyer, O. S. (2016). Challenges in microbial ecology: Building predictive understanding of community function and dynamics. The ISME Journal, 10, 2557–2568.CrossRefPubMedPubMedCentralGoogle Scholar
  86. Wubs, E. R. J., van der Putten, W. H., Bosch, M., & Bezemer, T. M. (2016). Soil inoculation steers restoration of terrestrial ecosystems. Nature Plants, 2, 16107.CrossRefPubMedGoogle Scholar
  87. Yagi, J. M., Suflita, J. M., Gieg, L. M., Derito, C. M., Jeon, C. O., & Madsen, E. L. (2010). Subsurface cycling of nitrogen and anaerobic aromatic hydrocarbon biodegradation revealed by nucleic acid and metabolic biomarkers. Applied and Environmental Microbiology, 76, 3124–3134.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Maria Ludovica Saccá
    • 1
  • Anna Barra Caracciolo
    • 2
  • Martina Di Lenola
    • 2
  • Paola Grenni
    • 2
    Email author
  1. 1.Council for Agricultural Research and EconomicsResearch Centre for Agriculture and Environment (CREA – AA)BolognaItaly
  2. 2.National Research Council, Water Research InstituteCNR-IRSAMonterotondoItaly

Personalised recommendations