Skip to main content

Bioavailability of Polycyclic Aromatic Hydrocarbons in Soil as Affected by Microorganisms and Plants

  • Conference paper
  • First Online:

Part of the book series: Sustainability in Plant and Crop Protection ((SUPP))

Abstract

The bioavailability of polycyclic aromatic hydrocarbons (PAHs) in soil can be enhanced through a variety of microbial and plant functions, that can be incorporated into optimized bioremediation technologies. In this review, we examine the potential of (bio)surfactants, the chemotactic mobilization of pollutant-degrading bacteria, and the role of bacterial attachment, to enhance biodegradation of PAHs. Plants can also play an active role in enhancing bioavailability of PAHs through rhizosphere-related mechanisms associated to specific exudate components that affect bacterial chemotaxis, pollutant mobilization, and intra-aggregate bacterial growth.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Aprill, W., & Sims, R. C. (1990). Evaluation of the use of prairie grasses for stimulating polycyclic aromatic hydrocarbon treatment in soil. Chemosphere, 20, 253–265.

    Article  CAS  Google Scholar 

  • Badri, D. V., & Vivanco, J. M. (2009). Regulation and function of root exudates. Plant Cell and Environment, 32, 666–681.

    Article  CAS  Google Scholar 

  • Bertin, C., Yang, X. H., & Weston, L. A. (2003). The role of root exudates and allelochemicals in the rhizosphere. Plant and Soil, 256, 67–83.

    Article  CAS  Google Scholar 

  • Bottner, P., Pansu, M., & Sallih, Z. (1999). Modelling the effect of active roots on soil organic matter turnover. Plant and Soil, 216, 15–25.

    Article  CAS  Google Scholar 

  • Briones, A. M., Okabe, S., Umemiya, Y., Ramsing, N. B., Reichardt, W., & Okuyama, H. (2003). Ammonia-oxidizing bacteria on root biofilms and their possible contribution to N use efficiency of different rice cultivars. Plant and Soil, 250, 335–348.

    Article  CAS  Google Scholar 

  • Bueno-Montes, M., Springael, D., & Ortega-Calvo, J. J. (2011). Effect of a non-ionic surfactant on biodegradation of slowly desorbing PAHs in contaminated soils. Environmental Science and Technology, 45, 3019–3026.

    Article  CAS  PubMed  Google Scholar 

  • Chen, Z. X., Ni, H. G., Jing, X., Chang, W. J., Sun, J. L., & Zeng, H. (2015). Plant uptake, translocation, and return of polycyclic aromatic hydrocarbons via fine root branch orders in a subtropical forest ecosystem. Chemosphere, 131, 192–200.

    Article  CAS  PubMed  Google Scholar 

  • Chigbo, C., & Batty, L. (2013). Effect of combined pollution of chromium and benzo (a) pyrene on seed growth of Lolium perenne. Chemosphere, 90, 164–169.

    Article  CAS  PubMed  Google Scholar 

  • Clode, P. L., Kilburn, M. R., Jones, D. L., Stockdale, E. A., Cliff, J. B., et al. (2009). In situ mapping of nutrient uptake in the rhizosphere using nanoscale secondary ion mass spectrometry. Plant Physiology, 151, 1751–1757.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Compant, S., Clement, C., & Sessitsch, A. (2010). Plant growth-promoting bacteria in the rhizo- and endosphere of plants: Their role, colonization, mechanisms involved and prospects for utilization. Soil Biology and Biochemistry, 42, 669–678.

    Article  CAS  Google Scholar 

  • Congiu, E., & Ortega-Calvo, J. J. (2014). Role of desorption kinetics in the rhamnolipid-enhanced biodegradation of polycyclic aromatic hydrocarbons. Environmental Science and Technology, 48, 10869–10877.

    Article  CAS  PubMed  Google Scholar 

  • Congiu, E., Parsons, J. R., & Ortega-Calvo, J. J. (2015). Dual partitioning and attachment effects of rhamnolipid on pyrene biodegradation under bioavailability restrictions. Environmental Pollution, 205, 378–384.

    Article  CAS  PubMed  Google Scholar 

  • Degryse, F., Smolders, E., & Merckx, R. (2006). Labile Cd complexes increase Cd availability to plants. Environmental Science and Technology, 40, 830–836.

    Article  CAS  PubMed  Google Scholar 

  • D'Orazio, V., Ghanem, A., & Senesi, N. (2013). Phytoremediation of pyrene contaminated soils by different plant species. Clean-Soil Air Water, 41, 377–382.

    Article  Google Scholar 

  • Ehlers, L. J., & Luthy, R. G. (2003). Contaminant bioavailability in soil and sediment. Environmental Science and Technology, 37, 295A–302A.

    Article  CAS  PubMed  Google Scholar 

  • Garcia-Junco, M., De Olmedo, E., & Ortega-Calvo, J. J. (2001). Bioavailability of solid and non-aqueous phase liquid (NAPL)-dissolved phenanthrene to the biosurfactant-producing bacterium Pseudomonas aeruginosa 19SJ. Environmental Microbiology, 3, 561–569.

    Article  CAS  PubMed  Google Scholar 

  • Garcia-Junco, M., Gomez-Lahoz, C., Niqui-Arroyo, J. L., & Ortega-Calvo, J. J. (2003). Biodegradation- and biosurfactant-enhanced partitioning of polycyclic aromatic hydrocarbons from nonaqueous-phase liquids. Environmental Science and Technology, 37, 2988–2996.

    Article  CAS  PubMed  Google Scholar 

  • Grayston, S. J., Vaughan, D., & Jones, D. (1997). Rhizosphere carbon flow in trees, in comparison with annual plants: The importance of root exudation and its impact on microbial activity and nutrient availability. Applied Soil Ecology, 5, 29–56.

    Article  Google Scholar 

  • Haderlein, A., Legros, R., & Ramsay, B. (2001). Enhancing pyrene mineralization in contaminated soil by the addition of humic acids or composted contaminated soil. Applied Microbiology and Biotechnology, 56, 555–559.

    Article  CAS  PubMed  Google Scholar 

  • Haftka, J. J. H., Parsons, J. R., Govers, H. A. J., & Ortega-Calvo, J. J. (2008). Enhanced kinetics of solid-phase microextraction and biodegradation of polycyclic aromatic hydrocarbons in the presence of dissolved organic matter. Environmental Toxicology and Chemistry, 27, 1526–1532.

    Article  CAS  PubMed  Google Scholar 

  • Hegde, R. S., & Fletcher, J. S. (1996). Influence of plant growth stage and season on the release of root phenolics by mulberry as related to development of phytoremediation technology. Chemosphere, 32, 2471–2479.

    Article  CAS  Google Scholar 

  • Hughes, M., Donnelly, C., Crozier, A., & Wheeler, C. T. (1999). Effects of the exposure of roots of Alnus glutinosa to light on flavonoids and nodulation. Canadian Journal of Botany, 77, 1311–1315.

    Article  CAS  Google Scholar 

  • Jimenez-Sanchez, C., Wick, L. Y., & Ortega-Calvo, J. J. (2012). Chemical effectors cause different motile behavior and deposition of bacteria in porous media. Environmental Science and Technology, 46, 6790–6797.

    Article  CAS  PubMed  Google Scholar 

  • Jimenez-Sanchez, C., Wick, L. Y., Cantos, M., & Ortega-Calvo, J. J. (2015). Impact of dissolved organic matter on bacterial tactic motility, attachment, and transport. Environmental Science and Technology, 49, 4498–4505.

    Article  CAS  PubMed  Google Scholar 

  • Krell, T., Lacal, J., Reyes-Darías, J. A., Jimenez-Sanchez, C., Sungthong, R., & Ortega-Calvo, J. J. (2013). Bioavailability of pollutants and chemotaxis. Current Opinion in Biotechnology, 24, 451–456.

    Article  CAS  PubMed  Google Scholar 

  • Kummerova, M., Kmentova, E., & Koptikova, J. (2001). Effect of fluoranthene on growth and primary processes of photosynthesis in faba bean and sunflower. Rostlinna Vyroba, 47, 344–351.

    CAS  Google Scholar 

  • Kuzyakov, Y., & Domanski, G. (2000). Carbon input by plants into the soil. Review. Journal of Plant Nutrition and Soil Science-Zeitschrift Fur Pflanzenernahrung Und Bodenkunde, 163, 421–431.

    Article  CAS  Google Scholar 

  • Liste, H. H., & Alexander, M. (2000). Plant-promoted pyrene degradation in soil. Chemosphere, 40, 7–10.

    Article  CAS  PubMed  Google Scholar 

  • Macci, C., Doni, S., Peruzzi, E., Bardella, S., Filippis, G., et al. (2013). A real-scale soil phytoremediation. Biodegradation, 24, 521–538.

    Article  CAS  PubMed  Google Scholar 

  • Macci, C., Peruzzi, E., Doni, S., Poggio, G., & Masciandaro, G. (2016). The phytoremediation of an organic and inorganic polluted soil: A real scale experience. International Journal of Phytoremediation, 18, 378–386.

    Article  CAS  PubMed  Google Scholar 

  • Maliszewska-Kordybach, B., & Smreczak, B. (2000). Ecotoxicological activity of soils polluted with polycyclic aromatic hydrocarbons (PAHS) – Effect on plants. Environmental Technology, 21, 1099–1110.

    Article  CAS  Google Scholar 

  • Marschner, P., Crowley, D., & Rengel, Z. (2011). Rhizosphere interactions between microorganisms and plants govern iron and phosphorus acquisition along the root axis – Model and research methods. Soil Biology and Biochemistry, 43, 883–894.

    Article  CAS  Google Scholar 

  • Martín, V. I., de la Haba, R. R., Ventosa, A., Congiu, E., Ortega-Calvo, J. J., & Moyá, M. L. (2014). Colloidal and biological properties of cationic single-chain and dimeric surfactants. Colloids and Surfaces B: Biointerfaces, 114, 247–254.

    Article  PubMed  Google Scholar 

  • Micallef, S. A., Channer, S., Shiaris, M. P., & Colon-Carmona, A. (2009). Plant age and genotype impact the progression of bacterial community succession in the Arabidopsis rhizosphere. Plant Signaling and Behavior, 4, 777–780.

    Article  PubMed  PubMed Central  Google Scholar 

  • Miya, R. K., & Firestone, M. K. (2001). Enhanced phenanthrene biodegradation in soil by slender oat root exudates and root debris. Journal of Environmental Quality, 30, 1911–1918.

    Article  CAS  PubMed  Google Scholar 

  • Nannipieri, P. (2006). Role of stabilised enzymes in microbial ecology and enzyme extraction from soil with potential applications in soil proteomics. Nucleic Acids and Proteins in Soil, 8, 75–94.

    Article  CAS  Google Scholar 

  • Newman, L. A., & Reynolds, C. M. (2004). Phytodegradation of organic compounds. Current Opinion in Biotechnology, 15, 225–230.

    Article  CAS  PubMed  Google Scholar 

  • Nguyen, C. (2003). Rhizodeposition of organic C by plants: Mechanisms and controls. Agronomie, 23, 375–396.

    Article  CAS  Google Scholar 

  • Niqui-Arroyo, J. L., & Ortega-Calvo, J. J. (2007). Integrating biodegradation and electroosmosis for the enhanced removal of polycyclic aromatic hydrocarbons from creosote-polluted soils. Journal of Environmental Quality, 36, 1444–1451.

    Article  CAS  PubMed  Google Scholar 

  • Niqui-Arroyo, J. L., & Ortega-Calvo, J. J. (2010). Effect of electrokinetics on the bioaccessibility of polycyclic aromatic hydrocarbons in polluted soils. Journal of Environmental Quality, 39, 1993–1998.

    Article  CAS  PubMed  Google Scholar 

  • Niqui-Arroyo, J. L., Bueno-Montes, M., Posada-Baquero, R., & Ortega-Calvo, J. J. (2006). Electrokinetic enhancement of phenanthrene biodegradation in creosote-polluted clay soil. Environmental Pollution, 142, 326–332.

    Article  CAS  PubMed  Google Scholar 

  • Niqui-Arroyo, J. L., Bueno-Montes, M., & Ortega-Calvo, J. J. (2011). Biodegradation of anthropogenic organic compounds in natural environments. In B. Xing, N. Senesi, & P. M. Huang (Eds.), Biophysico-chemical processes of anthropogenic organic compounds in environmental systems, IUPAC Series on Biophysico-Chemical Processes in Environmental Systems (Vol. 3, pp. 483–501). Chichester: Wiley.

    Chapter  Google Scholar 

  • Olson, P. E., Castro, A., Joern, M., DuTeau, N. M., Pilon-Smits, E. A. H., & Reardon, K. F. (2007). Comparison of plant families in a greenhouse phytoremediation study on an aged polycyclic aromatic hydrocarbon-contaminated soil. Journal of Environmental Quality, 36, 1461–1469.

    Article  CAS  PubMed  Google Scholar 

  • Ortega-Calvo, J. J., & Alexander, M. (1994). Roles of bacterial attachment and spontaneous partitioning in the biodegradation of naphthalene initially present in nonaqueous-phase liquids. Applied and Environmental Microbiology, 60, 2643–2646.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ortega-Calvo, J. J., & Saiz-Jimenez, C. (1998). Effect of humic fractions and clay on biodegradation of phenanthrene by a Pseudomonas fluorescens strain isolated from soil. Applied and Environmental Microbiology, 64, 3123–3126.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ortega-Calvo, J. J., Marchenko, A. I., Vorobyov, A. V., & Borovick, R. V. (2003). Chemotaxis in polycyclic aromatic hydrocarbon-degrading bacteria isolated from coal-tar- and oil-polluted rhizospheres. FEMS Microbiology Ecology, 44, 373–381.

    Article  CAS  PubMed  Google Scholar 

  • Ortega-Calvo, J. J., Molina, R., Jimenez-Sanchez, C., Dobson, P. J., & Thompson, I. P. (2011). Bacterial tactic response to silver nanoparticles. Environmental Microbiology Reports, 3, 526–534.

    Article  CAS  PubMed  Google Scholar 

  • Ortega-Calvo, J. J., Tejeda-Agredano, M. C., Jimenez-Sanchez, C., Congiu, E., Sungthong, R., et al. (2013). Is it possible to increase bioavailability but not environmental risk of PAHs in bioremediation? Journal of Hazardous Materials, 261, 733–745.

    Article  CAS  PubMed  Google Scholar 

  • Ortega-Calvo, J. J., Harmsen, J., Parsons, J. R., Semple, K. T., Aitken, M. D., et al. (2015). From bioavailability science to regulation of organic chemicals. Environmental Science and Technology, 49, 10255–10264.

    Article  CAS  PubMed  Google Scholar 

  • Pandya, S., Iyer, P., Gaitonde, V., Parekh, T., & Desai, A. (1999). Chemotaxis of Rhizobium SP.S2 towards Cajanus cajan root exudate and its major components. Current Microbiology, 38, 205–209.

    Article  CAS  PubMed  Google Scholar 

  • Parrish, Z. D., Banks, M. K., & Schwab, A. P. (2004). Effectiveness of phytoremediation as a secondary treatment for polycyclic aromatic hydrocarbons (PAHs) in composted soil. International Journal of Phytoremediation, 6, 119–137.

    Article  CAS  PubMed  Google Scholar 

  • Parrish, Z. D., Banks, M. K., & Schwab, A. P. (2005). Effect of root death and decay on dissipation of polycyclic aromatic hydrocarbons in the rhizosphere of yellow sweet clover and tall fescue. Journal of Environmental Quality, 34, 207–216.

    Article  CAS  PubMed  Google Scholar 

  • Paterson, E. (2003). Importance of rhizodeposition in the coupling of plant and microbial productivity. European Journal of Soil Science, 54, 741–750.

    Article  Google Scholar 

  • Phillips, L. A., Greer, C. W., & Germida, J. J. (2006). Culture-based and culture-independent assessment of the impact of mixed and single plant treatments on rhizosphere microbial communities in hydrocarbon contaminated flare-pit soil. Soil Biology and Biochemistry, 38, 2823–2833.

    Article  CAS  Google Scholar 

  • Reichenauer, T. G., & Germida, J. J. (2008). Phytoremediation of organic contaminants in soil and groundwater. ChemSusChem, 1, 708–717.

    Article  CAS  PubMed  Google Scholar 

  • Reichenberg, F., & Mayer, P. (2006). Two complementary sides of bioavailability: Accessibility and chemical activity of organic contaminants in sediments and soils. Environmental Toxicology and Chemistry, 25, 1239–1245.

    Article  CAS  PubMed  Google Scholar 

  • Rentz, J. A., Alvarez, P. J. J., & Schnoor, J. L. (2005). Benzo a pyrene co-metabolism in the presence of plant root extracts and exudates: Implications for phytoremediation. Environmental Pollution, 136, 477–484.

    Article  CAS  PubMed  Google Scholar 

  • Resina-Pelfort, O., García-Junco, M., Ortega-Calvo, J. J., Comas-Riu, J., & Vives-Rego, J. (2003). Flow cytometry discrimination between bacteria and clay humic acid particles during growth-linked biodegradation of phenanthrene by Pseudomonas aeruginosa 19SJ. FEMS Microbiology Ecology, 43, 55–61.

    CAS  PubMed  Google Scholar 

  • Ryan, P. R., Delhaize, E., & Jones, D. L. (2001). Function and mechanism of organic anion exudation from plant roots. Annual Review of Plant Physiology and Plant Molecular Biology, 52, 527–560.

    Article  CAS  PubMed  Google Scholar 

  • Schachtman, D. P., & Shin, R. (2007). Nutrient sensing and signaling: NPKS. Annual Review of Plant Biology, 58, 47–69.

    Article  CAS  PubMed  Google Scholar 

  • Semple, K. T., Doick, K. J., Jones, K. C., Burauel, P., Craven, A., & Harms, H. (2004). Defining bioavailability and bioaccessibility of contaminated soil and sediment is complicated. Environmental Science and Technology, 38, 228A–231A.

    Article  CAS  PubMed  Google Scholar 

  • Sungthong, R., van West, P., Cantos, M., & Ortega-Calvo, J. J. (2015). Development of eukaryotic zoospores within polycyclic aromatic hydrocarbon (PAH)-polluted environments: A set of behaviors that are relevant for bioremediation. Science of the Total Environment, 511, 767–776.

    Article  CAS  PubMed  Google Scholar 

  • Sungthong, R., Van West, P., Heyman, F., Jensen, D. F., & Ortega-Calvo, J. J. (2016). Mobilization of pollutant-degrading bacteria by eukaryotic zoospores. Environmental Science and Technology, 50, 7633–7640.

    Article  CAS  PubMed  Google Scholar 

  • Suo, B., Chen, Q., Wu, W., Wu, D., Tian, M., et al. (2016). Chemotactic responses of Phytophthora sojae zoospores to amino acids and sugars in root exudates. Journal of General Plant Pathology, 82, 142–148.

    Article  CAS  Google Scholar 

  • Tejeda-Agredano, M. C., Gallego, S., Niqui-Arroyo, J. L., Vila, J., Grifoll, M., & Ortega-Calvo, J. J. (2011). Effect of interface fertilization on biodegradation of polycyclic aromatic hydrocarbons present in nonaqueous-phase liquids. Environmental Science and Technology, 45, 1074–1081.

    Article  CAS  PubMed  Google Scholar 

  • Tejeda-Agredano, M. C., Gallego, S., Vila, J., Grifoll, M., Ortega-Calvo, J. J., & Cantos, M. (2013). Influence of sunflower rhizosphere on the biodegradation of PAHs in soil. Soil Biology and Biochemistry, 57, 830–840.

    Article  CAS  Google Scholar 

  • Tejeda-Agredano, M. C., Mayer, P., & Ortega-Calvo, J. J. (2014). The effect of humic acids on biodegradation of polycyclic aromatic hydrocarbons depends on the exposure regime. Environmental Pollution, 184, 435–442.

    Article  CAS  PubMed  Google Scholar 

  • Velasco-Casal, P., Wick, L. Y., & Ortega-Calvo, J. J. (2008). Chemoeffectors decrease the deposition of chemotactic bacteria during transport in porous media. Environmental Science and Technology, 42, 1131–1137.

    Article  CAS  PubMed  Google Scholar 

  • Vranova, V., Rejsek, K., Skene, K. R., Janous, D., & Formanek, P. (2013). Methods of collection of plant root exudates in relation to plant metabolism and purpose: A review. Journal of Plant Nutrition and Soil Science, 176, 175–199.

    Article  CAS  Google Scholar 

  • Walker, T. S., Bais, H. P., Grotewold, E., & Vivanco, J. M. (2003). Root exudation and rhizosphere biology. Plant Physiology, 132, 44–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang, Q., Wang, X., & Shen, Y. (2013). Comparison of soil microbial community catabolic diversity between rhizosphere and bulk soil induced by tillage or residue retention. Journal of Soil Science and Plant Nutrition, 13, 187–199.

    Google Scholar 

  • Yi, H., & Crowley, D. E. (2007). Biostimulation of PAH degradation with plants containing high concentrations of linoleic acid. Environmental Science and Technology, 41, 4382–4388.

    Article  CAS  PubMed  Google Scholar 

  • Zheng, X. Y., & Sinclair, J. B. (1996). Chemotactic response of Bacillus megaterium strain B153-2-2 to soybean root and seed exudates. Physiological and Molecular Plant Pathology, 48, 21–35.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was supported by the Spanish Ministry of Science and Innovation (CGL2013-44554-R and CGL2016-77497-R), the Andalusian Government (RNM 2337), and the European Commission (LIFE15 ENV/IT/000396).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jose Julio Ortega-Calvo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Ortega-Calvo, J.J., Posada-Baquero, R., Garcia, J.L., Cantos, M. (2017). Bioavailability of Polycyclic Aromatic Hydrocarbons in Soil as Affected by Microorganisms and Plants. In: Lukac, M., Grenni, P., Gamboni, M. (eds) Soil Biological Communities and Ecosystem Resilience. Sustainability in Plant and Crop Protection. Springer, Cham. https://doi.org/10.1007/978-3-319-63336-7_19

Download citation

Publish with us

Policies and ethics