Skip to main content

Microbial Communities, Functional Genes, and Nitrogen Cycling Processes as Affected by Tree Species

  • Conference paper
  • First Online:
Soil Biological Communities and Ecosystem Resilience

Abstract

Tree species influence soils through direct and indirect inputs above- and belowground through leaf litter and root inputs. Soil microbial communities can in turn influence tree growth and development through processes such decomposition and chemical transformation of nutrients in soils. In this chapter we will provide an overview of the mechanisms by which trees influence soil microbial communities and nitrogen cycling processes. Specifically, we explore the effects of tree species on ammonification and nitrification processes in forest floor soils, and relate those to functional genetic markers for ammonia-oxidation by archaea and bacteria (amoA AOA and AOB) bacterial denitrification (nirS and nirK). We will cover the use of complementary laboratory methods used to investigate these relationships, including the use of molecular techniques such as quantitative polymerase chain reaction (qPCR) to target gene abundances in soils, and 15N tracing experiments to understand the production and consumption of nitrogen. We will also address some of the benefits and drawbacks of these approaches, with special focus on the types of research questions that can be answered using these approaches. The chapter will wrap up with an example study in a common garden tree species trial in Vancouver, B.C., Canada, which demonstrated tree species effects on soil microbial communities and nitrogen cycling dynamics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Baeten, L., et al. (2013). A novel comparative research platform designed to determine the functional significance of tree species diversity in European forests. Perspectives in Plant Ecology, Evolution and Systematics, 15, 281–291.

    Article  Google Scholar 

  • Bardgett, R. D. (2011). Plant-soil interactions in a changing world. F1000 Biology Reports, 3, 16–16.

    Google Scholar 

  • Bardgett, R. D., & Wardle, D. A. (2010). Aboveground-Belowground Linkages: Biotic Interactions, Ecosystem Processes, and Global Change. New York: Oxford University Press. (Oxford Series in Ecology and Evolution).

    Google Scholar 

  • Binkley, D., & Fisher, R. (2013). Ecology and management of forest soils. Hoboken: Wiley.

    Google Scholar 

  • Binkley, D., & Giardina, C. (1998). Why do tree species affect soils?: The Warp and Woof of tree-soil interactions. Biogeochemistry, 42, 89–106.

    Article  Google Scholar 

  • BlaÅ¡ko, R., Holm Bach, L., Yarwood, S. A., Trumbore, S. E., Högberg, P., & Högberg, M. N. (2015). Shifts in soil microbial community structure, nitrogen cycling and the concomitant declining N availability in ageing primary boreal forest ecosystems. Soil Biology and Biochemistry, 91, 200–211.

    Article  Google Scholar 

  • Booth, M., Stark, J., & Rastetter, E. (2005). Controls on nitrogen cycling in terrestrial ecosystes: A synthetic analysis of literature data. Ecological Monographs, 72, 139–157.

    Article  Google Scholar 

  • Brookes, P. C., et al. (1985). Chloroform fumigation and the release of soil nitrogen: A rapid direct extraction method to measure microbial biomass nitrogen in soil. Soil Biology & Biochemistry., 17, 837–842.

    Article  CAS  Google Scholar 

  • Carrillo, Y., Ball, B. A., Strickland, M. S., & Bradford, M. A. (2012). Legacies of plant litter on carbon and nitrogen dynamics and the role of the soil community. Pedobiologia, 55, 185–192.

    Article  CAS  Google Scholar 

  • Chapin, F. S., Zavaleta, E. S., Eviner, V. T., Naylor, R. L., Vitousek, P. M., et al. (2000). Consequences of changing biodiversity. Nature, 405, 234–242.

    Article  CAS  PubMed  Google Scholar 

  • Connell, J. H. (1971). On the role of natural enemies in preventing competitive exclusion in some marine animals and in rain forest trees. In P. J. den Boer & G. R. Gradwell (Eds.), Dynamics of Populations. Wageningen: Centre for Agricultural Publishing and Documentation.

    Google Scholar 

  • Dawud, S. M., Raulund-Rasmussen, K., Domisch, T., Finér, L., Jaroszewicz, B., & Vesterdal, L. (2016). Is tree species diversity or tree species identity the more important driver of soil C stocks, C/N ratio, and pH? Ecosystems, 19, 645–660.

    Article  CAS  Google Scholar 

  • De Deyn, G. B., Cornelissen, J. H. C., & Bardgett, R. D. (2008). Plant functional traits and soil carbon sequestration in contrasting biomes. Ecology Letters, 11, 516–531.

    Article  PubMed  Google Scholar 

  • De Deyn, G. B., Quirk, H., Oakley, S., Ostle, N., & Bardgett, R. D. (2011). Rapid transfer of photosynthetic carbon through the plant-soil system in differently managed species-rich grasslands. Biogeosciences, 8, 1131–1139.

    Article  Google Scholar 

  • Diaz, S., & Cabido, M. (2001). Vive la difference: Plant functional diversity matters to ecosystem processes. Trends in Ecology and Evolution, 16, 646–655.

    Article  Google Scholar 

  • Elton, C. S. (1958). The ecology of invasions by animals and plants. London: Methuen.

    Book  Google Scholar 

  • Felker-Quinn, E., Bailey, J. K., & Schweitzer, J. A. (2011). Soil biota drive expression of genetic variation and development of population-specific feedbacks in an invasive plant. Ecology, 92, 1208–1214.

    Article  PubMed  Google Scholar 

  • Fornara, D. A., & Tilman, D. (2008). Plant functional composition influences rates of soil carbon and nitrogen accumulation. Journal of Ecology, 96, 314–322.

    Article  CAS  Google Scholar 

  • FrostegÃ¥rd, Ã…., & Bååth, E. (1996). The use of phospholipid fatty acid analysis to estimate bacterial and fungal biomass in soil. Biology and Feritility of Soil, 22, 59–65.

    Article  Google Scholar 

  • FrostegÃ¥rd, Ã…., Bååth, E., & Tunlio, A. (1993). Shifts in the structure of soil microbial communities in limed forests as revealed by phospholipid fatty acid analysis. Soil Biology and Biochemistry, 25, 723–730.

    Article  Google Scholar 

  • Gotelli, N., Ellison, A. M., & Ballif, B. A. (2012). Environmental proteomics, biodiversity statistics, and food-web structure. Trends in Ecology and Evolution, 27, 436–442.

    Article  PubMed  PubMed Central  Google Scholar 

  • Grayston, S. J., & Prescott, C. E. (2005). Microbial communities in forest floors under four tree species in coastal British Columbia. Soil Biology and Biochemistry, 37(6), 1157–1167.

    Google Scholar 

  • Harrison, K. A., & Bardgett, R. D. (2010). Influence of plant species and soil conditions on plant-soil feedback in mixed grassland communities. Journal of Ecology, 98, 384–395.

    Article  Google Scholar 

  • Huston, M. (1979). A general hypothesis of species diversity. The American Naturalist, 113, 81–101.

    Article  Google Scholar 

  • Isbell, F., Calcagno, V., Hector, A., Connolly, J., Harpole, W. S., et al. (2011). High plant diversity if needed to maintain ecosystem services. Nature, 477, 199–203.

    Article  CAS  PubMed  Google Scholar 

  • Janzen, D. H. (1970). Herbivores and the number of tree species in tropical forests. The American Naturalist, 104, 501–528.

    Article  Google Scholar 

  • Kattge, J., Díaz, S., Lavorel, S., et al. (2011). TRY – A global database of plant traits. Global Change Biology, 17, 2905–2935.

    Article  PubMed Central  Google Scholar 

  • Keiser, A. D., Strickland, M. S., Fierer, N., & Bradford, M. A. (2011). The effect of resource history on the functioning of soil microbial communities is maintained across time. Biogeosciences, 8, 1477–1486.

    Article  Google Scholar 

  • Klinka, K., Chen, H. Y. H., Wang, Q., & deMontigny, L. (1996). Forest canopies and their influence on understorey vegetation in early seral stands on West Vancouver Island. Northwest Science, 70, 193–200.

    Google Scholar 

  • Laakso, J., & Setala, H. (1999). Sensitivity of primary production to changes in the architecture of belowground food webs. Oikos, 87, 57–64.

    Article  Google Scholar 

  • Levine, J. M., Pachepsky, E., Kendall, B. E., Yelenik, S. G., & Hille Ris Lambers, J. (2006). Plant-soil feedbacks and invasive spread. Ecology Letters, 9, 1005–1014.

    Article  PubMed  Google Scholar 

  • Loreau, M., Naeem, S., Inchausti, P., Bengtsson, J., Grime, J. P., et al. (2001). Ecology – Biodiversity and ecosystem functioning: Current knowledge and future challenges. Science, 294, 804–808.

    Article  CAS  PubMed  Google Scholar 

  • Maestre, F., et al. (2012). Plant species richness and ecosystem multifunctionality in global drylands. Science, 335, 214–217.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Makkonen, M., Berg, M. P., Handa, I. T., Haettenschwiler, S., van Ruijven, J., van Bodegom, P. M., & Aerts, R. (2012). Highly consistent effects of plant litter identity and functional traits on decomposition across a latitudinal gradient. Ecology Letters, 15, 1033–1041.

    Article  PubMed  Google Scholar 

  • McCann, K. S. (2000). The diversity-stability debate. Nature, 405, 228–233.

    Article  CAS  PubMed  Google Scholar 

  • Midgley, G. (2012). Biodiversity and ecosystem function. Science, 335, 174.

    Article  CAS  PubMed  Google Scholar 

  • Murphy, D. V., Bhogal, A., Shepard, M., Goulding, K. W. T., Jarvis, S. C., Barraclough, D., & Gaunt, J. L. (1999). Comparison of 15 N labelling methods to measure gross nitrogen mineralisation. Soil Biology and Biochemistry, 31, 2015–2024.

    Article  CAS  Google Scholar 

  • Ogunseitan, O.A. (2006). Soil proteomics: Extraction and analysis of proteins from soils. In Nucleic acids and proteins in soil. London: Springer.

    Google Scholar 

  • Orwin, K. H., Buckland, S. M., Johnson, D., Turner, B. L., Smart, S., Oakley, S., & Bardgett, R. D. (2010). Linkages of plant traits to soil properties and the functioning of temperate grassland. Journal of Ecology, 98, 1074–1083.

    Article  Google Scholar 

  • Philippot, L., Ritz, K., Pandard, P., Hallin, S., & Martin-Laurent, F. (2012). Standardisation of methods in soil microbiology: Progress and challenges. FEMS Microbiology Ecology, 82, 1–10.

    Article  CAS  PubMed  Google Scholar 

  • Phillips, O. L., Martinez, R. V., Arroyo, L., Baker, T. R., Killeen, T., et al. (2002). Increasing dominance of large lianas in Amazonian forests. Nature, 418, 770–774.

    Article  CAS  PubMed  Google Scholar 

  • Prescott, C. E., & Vesterdal, L. (2013). Tree species effects on soils in temperate and boreal forests: Emerging themes and research needs. Forest Ecology and Management, 309, 1–3.

    Article  Google Scholar 

  • Prescott, C. E., Vesterdal, L., Pratt, J., Venner, K. H., de Montigny, L. M., & Trofymow, J. A. (2000). Nutrient concentrations and nitrogen mineralization in forest floors of single species conifer plantations in coastal British Columbia. Canadian Journal of Forest Research, 30, 1341–1352.

    Article  CAS  Google Scholar 

  • Reinhart, K. O., Packer, A., Van der Putten, W. H., & Clay, K. (2003). Plant-soil biota interactions and spatial distribution of black cherry in its native and invasive ranges. Ecology Letters, 6, 1046–1050.

    Article  Google Scholar 

  • Reinhart, K. O., Tytgat, T., Van der Putten, W. H., & Clay, K. (2010). Virulence of soil-borne pathogens and invasion by Prunus serotina. New Phytologist, 186, 484–495.

    Article  PubMed  Google Scholar 

  • Ribbons, R. R. (2014) Red spruce (Picea rubens) community dynamics at southern range margins: using dendrochronology to explore climate change. Peer J. http://dx.doi.org/10.7717/peerj.293

  • Ribbons, R. R., Levy-Booth, D. J., Masse, J., Grayston, S., McDonald, M., et al. (2016). Microbial communities, functional genes and nitrogen cycling processes in forest floors under four tree species. Soil Biology and Biochemistry, 103, 181–191.

    Article  CAS  Google Scholar 

  • Scherer-Lorenzen, M., Schulze, E. D., Don, A., Schumacher, J., & Weller, E. (2007). Exploring the functional significance of forest diversity: A new long-term experiment with temperate tree species (BIOTREE). Perspectives in Plant Ecology, Evolution and Systematics, 9, 53–70.

    Article  Google Scholar 

  • Small, C. J., & McCarthy, B. C. (2005). Relationship of understory diversity to soil nitrogen , topographic variation, and stand age in an eastern oak forest, USA. Forest Ecology and Management, 217, 229–243.

    Article  Google Scholar 

  • Steinbeiss, S., Bessler, H., Engels, C., Temperton, V. M., Buchmann, N., et al. (2008). Plant diversity positively affects short-term soil carbon storage in experimental grasslands. Global Change Biology, 14, 2937–2949.

    Article  Google Scholar 

  • Tilman, D., Lehman, C. L., & Bristow, C. E. (1998). Diversity-stability realtionships: Statistical inevitability or ecological consequence? The American Naturalist, 151, 277–282.

    CAS  PubMed  Google Scholar 

  • Van der Putten, W. H., Macel, M., & Visser, M. E. (2010). Predicting species distribution and abundance responses to climate change: Why it is essential to include biotic interactions across trophic levels. Philosophical Transactions of the Royal Society B-Biological Sciences, 365, 2025–2034.

    Article  PubMed Central  Google Scholar 

  • Veen, C., Freschet, G. T., Ordonez, A., & Wardle, D. (2014). Litter quality and environmental controls of home-field advantage effects on litter decomposition. Oikos, 124, 187–195.

    Article  Google Scholar 

  • Vesterdal, L., Elberling, B., Christiansen, J. R., Callesen, I., & Schmidt, I. K. (2012). Soil respiration and rates of soil carbon turnover differ among six common European tree species. Forest Ecology and Management, 264, 185–196.

    Article  Google Scholar 

  • Vitousek, P. M., Dantonio, C. M., Loope, L. L., Rejmanek, M., & Westbrooks, R. (1997). Introduced species: A significant component of human-caused global change. New Zealand Journal of Ecology, 21, 1–16.

    Google Scholar 

  • Wardle, D. A. (1997). Biodiversity and plant litter: Experimental evidence which does not support the view that enhanced species richness improves ecosystem function. Oikos, 79, 247–258.

    Article  Google Scholar 

  • Wardle, D. A. et al. (2001). Introduced browsing mammals in New Zealand natural forests: aboveground and belowground consequences. Ecological monographs, 71(4), 587–614.

    Google Scholar 

  • Wardle, D. A., Bardgett, R. D., McNamara, N. P., & Ostle, N. J. (2009). Plant functional group identity influences short-term peatland ecosystem carbon flux: Evidence from a plant removal experiment. Functional Ecology, 23, 454–462.

    Article  Google Scholar 

  • Wardle, D. A., Bardgett, R. D., Callaway, R. M., & Van der Putten, W. H. (2011). Terrestrial ecosystem responses to species gains and losses. Science, 332, 1273–1277.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Authors acknowledge the University of British Columbia, Vancouver, the University of Copenhagen, and Bangor University for facilities and support during the preparation of this chapter. R. Ribbons acknowledges FONASO for the doctoral research fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Relena R. Ribbons .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Ribbons, R.R., Mcdonald, M.A., Vesterdal, L. (2017). Microbial Communities, Functional Genes, and Nitrogen Cycling Processes as Affected by Tree Species. In: Lukac, M., Grenni, P., Gamboni, M. (eds) Soil Biological Communities and Ecosystem Resilience. Sustainability in Plant and Crop Protection. Springer, Cham. https://doi.org/10.1007/978-3-319-63336-7_13

Download citation

Publish with us

Policies and ethics