Advertisement

Feferman on Set Theory: Infinity up on Trial

  • Peter Koellner
Chapter
Part of the Outstanding Contributions to Logic book series (OCTR, volume 13)

Abstract

In this paper I examine Feferman’s reasons for maintaining that while the statements of first-order number theory are “completely clear” and “completely definite,” many of the statements of analysis and set theory are “inherently vague” and “indefinite.” I critique his five main arguments and argue that in the end the entire case rests on the brute intuition that the concept of subsets of natural numbers—along with the richer concepts of set theory—is not “clear enough to secure definiteness.” My response to this final, remaining point will be that the concept of “being clear enough to secure definiteness” is about as clear a case of an inherently vague and indefinite concept as one might find, and as such it can bear little weight in making a case against the definiteness of analysis and set theory.

Keywords

Predicativity Set theory The continuum hypothesis Definiteness Semi-constructive systems 

2010 Mathematics Subject Classification

00A30 03F35 03E60 03E50 

References

  1. 1.
    Blass, A.: Complexity of winning strategies. Discret. Math. 3(4), 295–300 (1972)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Einheuser, I.: Counterconventional conditionals. Philos. Stud. 127, 459–482 (2006)CrossRefGoogle Scholar
  3. 3.
    Feferman, S.: Systems of predicative analysis. J. Symb. Log. 29, 1–30 (1964)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Feferman, S.: A more perspicuous formal system for predicativity. In: Lorenz, K. (ed.) Konstruktionen versus Positionen, vol. I, pp. 69–93. Walter de Gruyter, Berlin (1979)Google Scholar
  5. 5.
    Feferman, S.: Infinity in mathematics: is Cantor necessary? In: Toraldo di Francia, G. (ed.) L’infinito nella scienzia, pp. 151–209. Istituto della Enciclopedia Italiana, Rome (1987). Reprinted in [9]Google Scholar
  6. 6.
    Feferman, S.: Reflecting on incompleteness. J. Symb. Log. 56, 1–49 (1991)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Feferman, S.: What rests on what? Proof-theoretic analysis of mathematics. Proceedings of the 15th international Wittgenstein symposium. In: Czermak, J. (ed.), Philosophy of Mathematics, Part 1. Verlag Hölder-Pichler-Tempsky, Vienna, pp. 141–171. Reprinted in [9], Chap. 10, pp. 187–208 (1993)Google Scholar
  8. 8.
    Feferman, S.: Gödel’s program for new axioms: why, where, how and what? In: Hajek, P. (ed.), Gödel 96: Logical Foundations of Mathematics, Computer Science, and Physics, vol. 6. Lecture Notes in Logic. AK Peters Ltd., pp. 3–22 (1996)Google Scholar
  9. 9.
    Feferman, S.: In the Light of Logic, Logic and Computation in Philosophy. Oxford University Press, Oxford (1998)zbMATHGoogle Scholar
  10. 10.
    Feferman, S.: Does mathematics need new axioms? Am. Math. Mon. 106, 99–111 (1999)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Feferman, S.: Does reductive proof theory have a viable rationale? Erkenntnis 53(1/2), 63–96 (2000)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Feferman, S.: Why the programs for new axioms need to be questioned. Bull. Symb. Log. 6(4), 401–413 (2000)CrossRefGoogle Scholar
  13. 13.
    Feferman, S.: Comments on, “Predicativty as a philosophical position”, by G. Hellman, Revue Internationale de Philosophie 3, 313–323 (2004)Google Scholar
  14. 14.
    Feferman, S.: Predicativity. In: Shapiro, S. (ed.), The Oxford Handbook of Philosophy of Mathematics and Logic, pp. 590–624. Oxford University Press (2005)Google Scholar
  15. 15.
    Feferman, S.: The 5 questions. In: Hendricks, V.F., Leitgeb, H. (eds.), Philosophy of Mathematics: 5 Questions, pp. 115–135. Automatic Press/VIP (2007)Google Scholar
  16. 16.
    Feferman, S.: On the strength of some semi-constructive theories. In: Feferman, S., Sieg, W. (eds.) Proof, Categories and Computation: Essays in honor of Grigori Mints, pp. 109–129. College Publications, London (2010)Google Scholar
  17. 17.
    Feferman, S.: Is the continuum hypothesis a definite mathematical problem? for the Exploring the Frontiers of Incompleteness (EFI) Project at Harvard Universitty, 2010–2012 (2011)Google Scholar
  18. 18.
    Feferman, S.: The continuum hypothesis is neither a definite mathematical problem nor a definite logical problem. In: Koellner, P. (ed.) Exploring the Frontiers of Incompleteness. Harvard University Press (2014). ForthcomingGoogle Scholar
  19. 19.
    Feferman, S.: Logic, mathematics, and conceptual structuralism. In: Rush, P. (ed.) The Metaphysics of Logic. Cambridge University Press (2014). ForthcomingGoogle Scholar
  20. 20.
    Feferman, S.: Parsons and I: Sympathies and differences. Talk given in honor of Charles Parsons at Columbia University (2016)Google Scholar
  21. 21.
    Feferman, S., Strahm, T.: The unfolding of non-finitist arithmetic. Ann. Pure Appl. Log. 104, 75–96 (2000)MathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    Hamkins, J.: The set-theoretic multiverse. Rev. Symb. Log. 5(3), 416–449 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  23. 23.
    Koellner, P.: Truth in mathematics: the question of pluralism. In: Bueno, O., Linnebo, Ø. (eds.) New Waves in Philosophy of Mathematics, pp. 80–116. Palgrave Macmillan, New Waves in Philosophy (2009)CrossRefGoogle Scholar
  24. 24.
    Koellner, P.: Strong logics of first and second order. Bull. Symb. Log. 16(1), 1–36 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  25. 25.
    Koellner, P.: Independence and large cardinals. In: Zalta, E.N. (ed.) Stanford Encyclopedia of Philosophy. Stanford University (2011). \(\langle \)http://plato.stanford.edu/entries/independence-large-cardinals\(\rangle \)
  26. 26.
    Koellner, P.: The continuum hypothesis. In: Zalta, E.N. (ed.) Stanford Encyclopedia of Philosophy. Stanford University (2013). \(\langle \)http://plato.stanford.edu/entries/continuum-hypothesis\(\rangle \)
  27. 27.
    Koellner, P.: Large cardinals and determinacy. In: Zalta, E.N. (ed.) Stanford Encyclopedia of Philosophy. Stanford University (2013). \(\langle \)http://plato.stanford.edu/entries/large-cardinals-determinacy\(\rangle \)
  28. 28.
    Koellner, P.: Feferman on predicativity (In preparation) (2016)Google Scholar
  29. 29.
    Koellner, P., Woodin, W.H.: Incompatible \(\Omega \)-complete theories. J. Symb. Log. 74(4) (2009)Google Scholar
  30. 30.
    Martin, D.A.: Multiple universes of sets and indeterminate truth values. Topoi 20(1), 5–16 (2001)MathSciNetCrossRefzbMATHGoogle Scholar
  31. 31.
    Martin, D.A.: Completeness or incompleteness of basic mathematical concepts (2015). \(\langle \)http://www.math.ucla.edu/~dam/booketc/efi.pdf\(\rangle \)
  32. 32.
    Martin-Löf, P.: The Hilbert-Brouwer controversy resolved? In: Atten, M.V., Boldini, P., Bourdeau, M., Heinzmann, G. (eds.) One Hundred Years of Intuitionism (1907–2007), pp. 243–256. Publications des Archives Henri Poincaré, Birkhauser Verlag AG, Basel (2008)CrossRefGoogle Scholar
  33. 33.
    Parsons, C.: The uniqueness of the natural numbers. Iyyun 39, 13–44 (1990)Google Scholar
  34. 34.
    Parsons, C.: Mathematical Thought and its Objects. Cambridge University Press (2008)Google Scholar
  35. 35.
    Rathjen, M.: The constructive Hilbert program and the limits of Martin-Löf type theory. Synthese 147, 81–120 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  36. 36.
    Rathjen, M.: Indefiniteness in semi-intuitionistic set theories: On a conjecture of Feferman. J. Symb. Log. 81(2), 742–754 (2016)Google Scholar
  37. 37.
    Steel, J.: Gödel’s program. In: Kennedy, J. (ed.) Interpreting Gödel: Critical Essays. Cambridge University Press, pp. 153–179 (2014)Google Scholar
  38. 38.
    Tait, W.W.: Truth and proof: the platonism of mathematics. Synthese, 69, 341–370 (1986). Reprinted in [39]Google Scholar
  39. 39.
    Tait, W.W.: The Provenance of Pure Reason: Essays in the Philosophy of Mathematics and Its History, Logic and Computation in Philosophy. Oxford University Press (2005)Google Scholar
  40. 40.
    Woodin, W.H.: The Continuum Hypothesis, the generic-multiverse of sets, and the \(\Omega \)-conjecture. In: Kennedy, J., Kossak, R. (eds.) Set Theory, Arithmetic, and Foundations of Mathematics: Theorems, Philosophies, vol. 36. Lecture Notes in Logic. Cambridge University Press (2011)Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2017

Authors and Affiliations

  1. 1.Department of PhilosophyHarvard UniversityCambridgeUSA

Personalised recommendations