Proof Theory of Constructive Systems: Inductive Types and Univalence

  • Michael Rathjen
Part of the Outstanding Contributions to Logic book series (OCTR, volume 13)


In Feferman’s work, explicit mathematics and theories of generalized inductive definitions play a central role. One objective of this article is to describe the connections with Martin–Löf type theory and constructive Zermelo–Fraenkel set theory. Proof theory has contributed to a deeper grasp of the relationship between different frameworks for constructive mathematics. Some of the reductions are known only through ordinal-theoretic characterizations. The paper also addresses the strength of Voevodsky’s univalence axiom. A further goal is to investigate the strength of intuitionistic theories of generalized inductive definitions in the framework of intuitionistic explicit mathematics that lie beyond the reach of Martin–Löf type theory.


Explicit mathematics Constructive Zermelo–Fraenkel set theory Martin–Löf type theory Univalence axiom Proof-theoretic strength 


03F30 03F50 03C62 



Part of the material is based upon research supported by the EPSRC of the UK through grant No. EP/K023128/1. This research was also supported by a Leverhulme Research Fellowship and a Marie Curie International Research Staff Exchange Scheme Fellowship within the 7th European Community Framework Programme. This publication was also made possible through the support of a grant from the John Templeton Foundation.

Thanks are also due for the invitation to speak at the American Annual Meeting of the Association for Symbolic Logic (University of Connecticut, Storrs, 23 May, 2016) where the material of the first seven sections was presented.


  1. 1.
    Aczel, P.: The strength of Martin–Löf’s intuitionistic type theory with one universe. In: Miettinen, S., Väänänen, S. (eds.) Proceedings of Symposia in Mathematical Logic, Oulu, 1974, and Helsinki, 1975, Report No. 2, University of Helsinki, Department of Philosophy, pp. 1–32 (1977)Google Scholar
  2. 2.
    Aczel, P.: The type theoretic interpretation of constructive set theory: choice principles. In: Troelstra, A.S., van Dalen, D (eds.) The L.E.J. Brouwer Centenary Symposium, pp. 1–40. North Holland, Amsterdam (1982)Google Scholar
  3. 3.
    Aczel, P.: The type theoretic interpretation of constructive set theory: inductive definitions. In: Marcus, R.B., et al. (eds.) Logic, Methodology and Philosophy of Science VII, pp. 17–49. North Holland, Amsterdam (1986)Google Scholar
  4. 4.
    Aczel, P., Rathjen, M.: Notes on constructive set theory, Technical report 40, Institut Mittag-Leffler, The Royal Swedish Academy of Sciences (2001)., Preprint No. 40
  5. 5.
    Aczel, P., Rathjen, M.: Notes on constructive set theory, 243 p, Preprint (2010).
  6. 6.
    Aczel, P.: On relating type theories and set theories. In: Altenkirch, T., Naraschewski, W., Reus, B. (eds.) Types ’98. Lecture Notes in Computer Science 1257. Springer, Berlin (2000)Google Scholar
  7. 7.
    Barwise, J.: Admissible Sets and Structures. Springer, Berlin (1975)CrossRefzbMATHGoogle Scholar
  8. 8.
    Beeson, M.: Foundations of Constructive Mathematics. Springer, Berlin (1985)CrossRefzbMATHGoogle Scholar
  9. 9.
    Beeson, M.: Goodman’s theorem and beyond. Pac. J. Math. 84 (1979)Google Scholar
  10. 10.
    Bezem, M., Coquand, T., Huber, S.: A model of type theory in cubical sets. In: Matthes, R., Schubert, A. (eds.) 19th International Conference on Types for Proofs and Programs (TYPES 2013), pp. 107–128 (2013)Google Scholar
  11. 11.
    Bishop, E.: Foundations of Constructive Analysis. McGraw-Hill, New York (1967)zbMATHGoogle Scholar
  12. 12.
    Buchholz, W.: A simplified version of local predicativity. In: Aczel, P., Simmons, H., Wainer, S. (eds.) Leeds Proof Theory 90, pp. 115–147. Cambridge University Press, Cambridge (1993)Google Scholar
  13. 13.
    Buchholz, W., Feferman, S., Pohlers, W., Sieg, W.: Iterated inductive definitions and subsystems of analysis. In: LNM 897. Springer (1981)Google Scholar
  14. 14.
    R.-M. Chen.: Independence and conservativity results for intuitionistic set theory, Ph.D. thesis, University of Leeds, Leeds (2010)Google Scholar
  15. 15.
    R.-M. Chen., M. Rathjen.: Conservativity à la Goodman for intuitionistic set theories, in preparationGoogle Scholar
  16. 16.
    Church, A.: A formulation of the simple theory of types. J. Symb. Log. 5, 56–68 (1940)MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Crosilla, L., Rathjen, M.: Inaccessible set axioms may have little consistency strength. Ann. Pure Appl. Log. 115, 33–70 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Diaconescu, R.: Axiom of choice and complementation. Proc. Amer. Math. Soc. 51, 176–178 (1975)MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Feferman, S.: Proof theory of classical and constructive inductive definitions. A forty year saga, pp. 7–30, 1968–2008Google Scholar
  20. 20.
    Feferman, S.: A language and axioms for explicit mathematics. Algebra Log. Lect. Not. Math. 450, 87–139 (1975)MathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    Feferman, S.: Constructive theories of functions and classes. In: Crossley, J.N. (ed.) Logic Colloquium ’78, pp. 159–224 (1979)Google Scholar
  22. 22.
    Feferman, S.: Monotone inductive definitions. In: Troelstra, A.S., van Dallen, D. (eds.) The L.E.J. Brouwer Centenary Symposium, pp. 77–89. North-Holland (1982)Google Scholar
  23. 23.
    Feferman, S.: Iterated inductive fixed-point theories: application to Hancock’s conjecture. In: Patras Logic Symposion, pp. 171–196. North-Holland, Amsterdam (1982)Google Scholar
  24. 24.
    Feferman, S.: Systems of predicative analysis. J. Symb. Log. 29, 1–30 (1964)MathSciNetCrossRefzbMATHGoogle Scholar
  25. 25.
    Feferman, S.: Systems of predicative analysis II. Representations of ordinals. J. Symb. Log. 33, 193–220 (1968)MathSciNetCrossRefzbMATHGoogle Scholar
  26. 26.
    Glaß, T., Rathjen, M., Schlüter, A.: The strength of monotone inductive definitions in explicit mathematics. Ann. Pure Appl. Log. 85, 1–46 (1997)CrossRefzbMATHGoogle Scholar
  27. 27.
    Goodman, N.: The theory of the Gödel functionals. J. Symb. Log. 41, 574–583 (1976)zbMATHGoogle Scholar
  28. 28.
    Goodman, N.: Relativized realizability in intuitionistic arithmetic of all finite types. J. Symb. Log. 43 (1978)Google Scholar
  29. 29.
    Gordeev, L.: Proof-theoretic analysis: Weak systems of functions and classes. Ann. Pure Appl. Log. 38, 1–121 (1988)MathSciNetCrossRefzbMATHGoogle Scholar
  30. 30.
    Harris, M.: Mathematics without Apologies (2015)Google Scholar
  31. 31.
    Hilbert, D., Bernays, P.: Grundlagen der Mathematik II. Springer, Berlin (1938)zbMATHGoogle Scholar
  32. 32.
    Hofmann, M.: Conservativity of equality reflection over intensional type theory. In: Berardi, S., Coppo, M. (eds.) Types for Proofs and Programs, International Workshop TYPES’95. Lecture Notes in Computer Science 1158, pp. 153–164. Springer (1995)Google Scholar
  33. 33.
    Homotopy Type Theory: Univalent Foundations of Mathematics. The Univalent Foundations Program (2013)Google Scholar
  34. 34.
    Jäger, G.: A well-ordering proof for Feferman’s theory \(T_0\). Archiv f. Math. Logik 23, 65–77 (1983)CrossRefzbMATHGoogle Scholar
  35. 35.
    Jäger, G.: Theories for admissible sets: a unifying approach to proof theory. Bibliopolis, Naples (1986)zbMATHGoogle Scholar
  36. 36.
    Jäger, G., Pohlers, W.: Eine beweistheoretische Untersuchung von \(\Delta ^1_2-{{\rm {CA}}}+{{\rm {BI}}}\) und verwandter Systeme. Sitzungsberichte der Bayerischen Akademie der Wissenschaften, Mathematisch-Naturwissenschaftliche Klasse (1982)Google Scholar
  37. 37.
    Jäger, G., Strahm, T.: Upper bounds for metapredicative Mahlo in explicit mathematics and admissible set theory. J. Symb. Log. 66, 935–958 (2001)CrossRefzbMATHGoogle Scholar
  38. 38.
    Jäger, G., Studer, T.: Extending the system \(T_0\) of explicit mathematics: the limit and Mahlo axioms. Ann. Pure Appl. Log. 114, 79–101 (2002)CrossRefzbMATHGoogle Scholar
  39. 39.
    Jäger, G., Kahle, R., Studer, T.: Universes in explicit mathematics. Ann. Pure Appl. Log. 109, 141–162 (2001)MathSciNetCrossRefzbMATHGoogle Scholar
  40. 40.
    Jervell, H.R.: Constructive universes I. In: Müller G.H., Scott D.S. (eds.) Higher Set Theory. Lecture notes in Mathematics No. 669, pp. 73–98. Springer, Berlin (1978)Google Scholar
  41. 41.
    Kalpulkin, C., Lummsdaine, P.L., Voevodsky, V.: The simplicial model of univalent foundations. Preprint (2012). arXiv:1211.2851)
  42. 42.
    Martin-Löf, P.: Intuitionistic Type Theory. Bibliopolis, Naples (1984)zbMATHGoogle Scholar
  43. 43.
    Möllerfeld, M.: Generalized Inductive Definitions. The \(\mu \)-calculus and \(\Pi ^1_2\)-comprehension. Ph.D. dissertation, Universität Münster (2002)Google Scholar
  44. 44.
    Myhill, J.: Constructive set theory. J. Symb. Log. 40, 347–382 (1975)MathSciNetCrossRefzbMATHGoogle Scholar
  45. 45.
    Nordström, B., Petersson, K., Smith, J.M.: Programming in Martin-Löf’s Type Theory. Clarendon Press, Oxford (1990)zbMATHGoogle Scholar
  46. 46.
    Palmgren, E.: Type-theoretic interpretations of iterated, strictly positive inductive definitions. Arch. Math. Logic 32, 75–99 (1993)MathSciNetCrossRefzbMATHGoogle Scholar
  47. 47.
    Rathjen, M.: Proof-Theoretic Analysis of KPM. Arch. Math. Log. 30, 377–403 (1991)MathSciNetCrossRefzbMATHGoogle Scholar
  48. 48.
    Rathjen, M.: The strength of some Martin-Löf type theories, p. 39. Department of Mathematics, Ohio State University, Preprint (1993)Google Scholar
  49. 49.
    Rathjen, M.: The strength of Martin-Löf type theory with a superuniverse. Part I. Arch. Math. Log. 39, 1–39 (2000)MathSciNetCrossRefzbMATHGoogle Scholar
  50. 50.
    Rathjen, M.: The strength of Martin-Löf type theory with a superuniverse. Part II. Arch. Math. Log. 40, 207–233 (2001)MathSciNetCrossRefzbMATHGoogle Scholar
  51. 51.
    Rathjen, M., Palmgren, E.: Inaccessibility in constructive set theory and type theory. Ann. Pure Appl. Log. 94, 181–200 (1998)MathSciNetCrossRefzbMATHGoogle Scholar
  52. 52.
    Rathjen, M.: The anti-foundation axiom in constructive set theories. In: Mints, G., Muskens, R. (eds.) Games, Logic, and Constructive Sets, pp. 87–108. CSLI Publications, Stanford (2003)Google Scholar
  53. 53.
    Rathjen, M.: The constructive Hilbert programme and the limits of Martin-Löf type theory. Synthese 147, 81–120 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  54. 54.
    Rathjen, M.: The formulae-as-classes interpretation of constructive set theory. In: Schwichtenberg, H., Spies, K. (eds.) Proof Technology and Computation, pp. 279–322. IOS Press, Amsterdam (2006)Google Scholar
  55. 55.
    Rathjen, M., Tupailo, S.: Characterizing the interpretation of set theory in Martin-Löf type theory. Ann. Pure Appl. Log. 141, 442–471 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  56. 56.
    Rathjen, M.: Monotone inductive definitions in explicit mathematics. J. Symb. Log. 61, 125–146 (1996)MathSciNetCrossRefzbMATHGoogle Scholar
  57. 57.
    Rathjen, M.: Explicit Mathematics with the monotone fixed point principle. J. Symb. Log. 63, 509–542 (1998)MathSciNetCrossRefzbMATHGoogle Scholar
  58. 58.
    Rathjen, M.: Explicit Mathematics with the monotone fixed point principle. II: Models. J. Symb. Log. 64, 517–550 (1999)MathSciNetCrossRefzbMATHGoogle Scholar
  59. 59.
    Rathjen, M.: Explicit Mathematics with monotone inductive definitions: a survey. In: Sieg, W. et al. (eds.) Reflections on the Foundations of Mathematics: Essays in Honor of Solomon Feferman. Lecture Notes in Logic 15, pp. 329–346 (2002)Google Scholar
  60. 60.
    Rathjen, M.: The constructive Hilbert programme and the limits of Martin–Löf type theory. In: Lindström, S., Palmgren, E., Segerberg, K., Stoltenberg-Hansen, V. (eds.) Logicism, Intuitionism, and Formalism. What has Become of Them? Synthese Library, vol. 341, pp. 397–433. Springer (2009)Google Scholar
  61. 61.
    Rathjen, M.: Constructive Zermelo-Fraenkel set theory and the limited principle of omniscience. Ann. Pure Appl. Log. 165, 563–572 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  62. 62.
    Rathjen, M.: Turing’s ‘Oracle’ in proof theory. In: Cooper, S.B., van Leeuwen, J. (eds.) Alan Turing: His Work and Impact, pp. 198–202. Elsevier, Amsterdam (2013)Google Scholar
  63. 63.
    Rathjen, M.: Well-ordering proofs in intuitionistic theories and conservativity. In preparationGoogle Scholar
  64. 64.
    Rathjen, M., Tupailo, S.: On the strength of UMID in intuitionistic explicit mathematics. (2004) UnpublishedGoogle Scholar
  65. 65.
    Sato, K.: A new model construction by making a detour via intuitionistic theories II: interpretability lower bound of Feferman’s explicit mathematics \(T_0\). Ann. Pure Appl. Log. 166, 800–835 (2015)CrossRefzbMATHGoogle Scholar
  66. 66.
    Setzer, A.: A well-ordering proof for the proof theoretical strength of Martin-Löf type theory. Ann. Pure Appl. Log. 92, 113–159 (1998)CrossRefzbMATHGoogle Scholar
  67. 67.
    Setzer, A.: Extending Martin-Löf type theory by one Mahlo-universe. Arch. Math. Log. 39, 155–181 (2000)MathSciNetCrossRefzbMATHGoogle Scholar
  68. 68.
    Simpson, S.G.: Subsystems of Second Order Arithmetic, 2nd edn. Cambridge University Press, New York (2009)CrossRefzbMATHGoogle Scholar
  69. 69.
    Takahashi, S.: Monotone inductive definitions in a constructive theory of functions and classes. Ann. Pure Appl. Logic 42, 255–279 (1989)MathSciNetCrossRefzbMATHGoogle Scholar
  70. 70.
    Troelstra, A., van Dalen, D.: Constructivism in Mathematics, vol. II. North Holland, Amsterdam (1988)zbMATHGoogle Scholar
  71. 71.
    Tupailo, S.: On the intuitionistic strength of monotone inductive definitions. J. Symb. Log. 69, 790–798 (2004)MathSciNetCrossRefzbMATHGoogle Scholar
  72. 72.
    Weyl, H.: Das Kontinuum, kritische Untersuchungen über die Grundlagen der Analysis. Verlag von Veit und Comp, Leipzig (1918)zbMATHGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2017

Authors and Affiliations

  1. 1.Department of Pure MathematicsUniversity of LeedsLeedsUK

Personalised recommendations