Skip to main content

The Operational Penumbra: Some Ontological Aspects

  • 553 Accesses

Part of the Outstanding Contributions to Logic book series (OCTR,volume 13)

Abstract

Feferman’s explicit mathematics and operational set theory are two important examples of families of theories providing an operational approach to mathematics. My aim here is to survey some central developments in these two fields, to sketch some of Fefeman’s main achievements, and to relate them to the work of others. The focus of my approach is on ontological questions.

Keywords

  • Explicit mathematics
  • Operational set theory Operational approach
  • Proof theory

2010 MSC

  • MSC 03B30
  • 03B40
  • 03E20
  • 03F03

This is a preview of subscription content, access via your institution.

References

  1. Beeson, M.J.: Foundations of Constructive Mathematics: Metamathematical Studies. Ergebnisse der Mathematik und ihrer Grenzgebiete, vol. 3/6. Springer, Berlin (1985)

    CrossRef  MATH  Google Scholar 

  2. Bishop, E.: Foundations of Constructive Analysis. McGraw-Hill Series in Higher Mathematics. McGraw-Hill, New York (1967)

    MATH  Google Scholar 

  3. Buchholz, W., Feferman, S., Pohlers, W., Sieg, W.: Iterated Inductive Definitions and Subsystems of Analysis: Recent Proof-theoretical Studies. Lecture Notes in Mathematics, vol. 897. Springer, Berlin (1981)

    CrossRef  MATH  Google Scholar 

  4. Cantini, A.: Extending constructive operational set theory by impredicative principles. Mathematical Logic Quarterly 57(3), 299–322 (2011)

    MathSciNet  CrossRef  MATH  Google Scholar 

  5. Cantini, A., Crosilla, L.: Constructive set theory with operations. In: Andretta, A., Kearnes, K., Zambella, D. (eds.) Logic Colloquium 2004. Lecture Notes in Logic, vol. 29, pp. 47–83. Cambridge University Press, Cambridge (2007)

    CrossRef  Google Scholar 

  6. Cantini, A., Crosilla, L.: Elementary constructive operational set theory. In: Schindler, R. (ed.) Ways of Proof Theory. Ontos Mathematical Logic, vol. 2, pp. 199–240. De Gruyter, New York (2010)

    Google Scholar 

  7. Church, A.: A set of postulates for the foundation of logic. Ann. Math. 33(2), 346–366 (1932)

    MathSciNet  CrossRef  MATH  Google Scholar 

  8. Church, A.: A set of postulates for the foundation of logic (second paper). Ann. Math. 34(4), 839–864 (1933)

    MathSciNet  CrossRef  MATH  Google Scholar 

  9. Feferman, S.: A language and axioms for explicit mathematics. In: Crossley, J.N. (ed.) Algebra and Logic. Lecture Notes in Mathematics, vol. 450, pp. 87–139. Springer, Berlin (1975)

    CrossRef  Google Scholar 

  10. Feferman, S.: Theories of finite type related to mathematical practice. In: Barwise, K.J. (ed.) Handbook of Mathematical Logic. Studies in Logic and the Foundations of Mathematics, vol. 90, pp. 913–9711. Elsevier, Amsterdam (1977)

    CrossRef  Google Scholar 

  11. Feferman, S.: Recursion theory and set theory: a marriage of convenience. In: Fenstad, J.E., Gandy, R.O., Sacks, G.E. (eds.) Generalized Recursion Theory II, Oslo 1977. Studies in Logic and the Foundations of Mathematics, vol. 94, pp. 55–98. Elsevier, New York (1978)

    CrossRef  Google Scholar 

  12. Feferman, S.: Constructive theories of functions and classes. In: Boffa, M., van Dalen, D., McAloon, K. (eds.) Logic Colloquium ’78. Studies in Logic and the Foundations of Mathematics, vol. 97, pp. 159–224. Elsevier, Amsterdam (1979)

    Google Scholar 

  13. Feferman, S.: Generalizing set-theoretical model theory and an analogue theory on admissible sets. In: Hintikka, J., Niiniluoto, I., Saarinen, E. (eds.) Essays on Mathematical and Philosophical Logic. Synthese Library, vol. 22, pp. 171–195. Reidel, Dordrecht (1979)

    CrossRef  Google Scholar 

  14. Feferman, S.: Iterated inductive fixed-point theories: application to Hancock’s conjecture. In: Metakides, G. (ed.) Patras Logic Symposion. Studies in Logic and the Foundations of Mathematics, vol. 109, pp. 171–196. Elsevier, New York (1982)

    CrossRef  Google Scholar 

  15. Feferman, S.: Monotone inductive definitions. In: Troelstra, A.S., van Dalen, D. (eds.) The L.E.J. Brouwer Centenary Symposium. Studies in Logic and the Foundations of Mathematics, vol. 110, pp. 77–89. Elsevier, New York (1982)

    Google Scholar 

  16. Feferman, S.: In the light of logic; chapter 13: Weyl vindicated: Das Kontinuum seventy years later. Logic and Computation in Philosophy. Oxford University Press, Oxford (1998)

    Google Scholar 

  17. Feferman, S.: The significance of Hermann Weyl’s Das Kontinuum. In: Hendricks, V.F., Pedersen, S.A., Jørgensen, K.F. (eds.) Proof Theory: History and Philosophical Significance. Synthese Library Series, pp. 179–194. Kluwer Academic Publishers, Dordrecht (2000)

    CrossRef  Google Scholar 

  18. Feferman, S.: Notes on operational set theory, I. generalization of “small” large cardinals in classical an admissible set theory, Technical notes, Stanford University (2001)

    Google Scholar 

  19. Feferman, S.: Operational set theory and small large cardinals. Inf. Comput. 207, 971–979 (2009)

    MathSciNet  CrossRef  MATH  Google Scholar 

  20. Feferman, S.: On the strength of some semi-constructive theories. In: Berger, U., Diener, H., Schuster, P., Seisenberger, M. (eds.) Logic, Construction, Computation. Ontos Mathematical Logic, vol. 3, pp. 201–225. De Gruyter, New York (2012)

    Google Scholar 

  21. Feferman, S.: An operational theory of sets and classes, Technical Notes, Stanford University (2013)

    Google Scholar 

  22. Feferman, S.: The operational perspective: three routes. In: Kahle, R., Strahm, T., Studer, T. (eds.), Advances in Proof Theory. Progress in Computer Science and Applied Logic. Birkhäuser, Basel (2016)

    Google Scholar 

  23. Feferman, S., Jäger, G.: Systems of explicit mathematics with non-constructive \(\mu \)-operator. part I. Ann. Pure Appl. Logic 65(13), 243–263 (1993)

    MathSciNet  CrossRef  MATH  Google Scholar 

  24. Feferman, S., Jäger, G., Strahm, T.: Foundations of explicit mathematics, in preparation

    Google Scholar 

  25. Glaß, T., Strahm, T.: Systems of explicit mathematics with non-constructive \(\mu \)-operator and join. Ann. Pure Appl. Logic 82(2), 193–219 (1996)

    MathSciNet  CrossRef  MATH  Google Scholar 

  26. Glaß, T., Rathjen, M., Schlüter, A.: On the proof-theoretic strength of monotone induction in explicit mathematics. Ann. Pure Appl. Logic 85(1), 1–46 (1997)

    MathSciNet  CrossRef  MATH  Google Scholar 

  27. Hinman, P.G.: Recursion-Theoretic Hierarchies. Perspectives in Mathematical Logic, vol. 9. Springer, Berlin (1978)

    Google Scholar 

  28. Jäger, G.: A well-ordering proof for Feferman’s theory \( T_0\). Archiv für mathematische Logik und Grundlagenforschung 23(1), 65–77 (1983)

    MathSciNet  CrossRef  MATH  Google Scholar 

  29. Jäger, G.: Induction in the elementary theory of types and names. In: Börger, E., Kleine Büning, H., Richter, M.M. (eds.) CSL ’87. Lecture Notes in Computer Science, vol. 329, pp. 118–128. Springer, Berlin (1987)

    CrossRef  Google Scholar 

  30. Jäger, G.: Applikative Theorien und explizite Mathematik. Vorlesungsskript. Universität Bern, Bern (1996)

    Google Scholar 

  31. Jäger, G.: Power types in explicit mathematics?. J. Symb. Logic 62(4), 1142–1146 (1997)

    Google Scholar 

  32. Jäger, G.: On Feferman’s operational set theory \( OST\). Ann. Pure Appl. Logic 150(1–3), 19–39 (2007)

    MathSciNet  CrossRef  MATH  Google Scholar 

  33. Jäger, G.: Full operational set theory with unbounded existential quantification and power set. Ann. Pure Appl. Logic 160(1), 33–52 (2009)

    MathSciNet  CrossRef  MATH  Google Scholar 

  34. Jäger, G.: Operations, sets and classes. In: Glymour, C., Wei, W., Westerståhl, D. (eds.), Logic, Methodology and Philosophy of Science - Proceedings of the Thirteenth International Congress, pp. 74–96. College Publications, Norcross (2009)

    Google Scholar 

  35. Jäger, G.: Operational closure and stability. Ann. Pure Appl. Logic 164(7–8), 813–821 (2013)

    MathSciNet  CrossRef  MATH  Google Scholar 

  36. Jäger, G.: Operational set theory with classes?. Scientific Talk (2013)

    Google Scholar 

  37. Jäger, G.: Relativizing operational set theory. Bull. Symb. Logic 22, 332–352 (2016)

    MathSciNet  CrossRef  MATH  Google Scholar 

  38. Jäger, G., Krähenbühl, J.: \({\Sigma }^1_1\) choice in a theory of sets and classes. In: Schindler, R. (ed.) Ways of Proof Theory. Ontos Mathematical Logic, vol. 2, pp. 199–240. De Gruyter, New York (2010)

    Google Scholar 

  39. Jäger, G., Pohlers, W.: Eine beweistheoretische Untersuchung von \((\Delta ^1_2\text{-}\sf CA) + (\sf BI\sf )\) und verwandter Systeme. Sitzungsberichte der Bayerischen Akademie der Wissenschaften, Mathematisch-Naturwissenschaftliche Klasse 1, 1–28 (1982)

    Google Scholar 

  40. Jäger, G., Probst, D.: The Suslin operator in applicative theories: Its proof-theoretic analysis via ordinal theories. Ann. Pure Appl. Logic 162(8), 647–660 (2011)

    MathSciNet  CrossRef  MATH  Google Scholar 

  41. Jäger, G., Strahm, T.: Upper bounds for metapredicative Mahlo in explicit mathematics and admissible set theory. J. Symb. Logic 66(2), 935–958 (2001)

    CrossRef  MATH  Google Scholar 

  42. Jäger, G., Strahm, T.: The proof-theoretic strength of the Suslin operator in applicative theories. In: Sieg, W., Sommer, R., Talcott, C. (eds.), Reflections on the Foundations of Mathematics: Essays in Honor of olomon Feferman, Lecture Notes in Logic, Association for Symbolic Logic, vol. 15, pp. 270–292 (2002)

    Google Scholar 

  43. Jäger, G., Strahm, T.: Reflections on reflection in explicit mathematics. Ann. Pure Appl. Logic 136(1–2), 116–133 (2005)

    MathSciNet  CrossRef  MATH  Google Scholar 

  44. Jäger, G., Zumbrunnen, R.: About the strength of operational regularity. In: Berger, U., Diener, H., Schuster, P., Seisenberger, M. (eds.) Logic, Construction, Computation. Ontos Mathematical Logic, vol. 3, pp. 305–324. De Gruyter, New York (2012)

    Google Scholar 

  45. Jäger, G., Zumbrunnen, R.: Explicit mathematics and operational set theory: some ontological comparisons. Bull. Symb. Logic 20(3), 275–292 (2014)

    MathSciNet  CrossRef  MATH  Google Scholar 

  46. Jäger, G., Kahle, R., Studer, T.: Universes in explicit mathematics. Ann. Pure Appl. Logic 109(3), 141–162 (2001)

    MathSciNet  CrossRef  MATH  Google Scholar 

  47. Kahle, R.: Applikative Theorien und Frege-Strukturen, Ph.D. thesis, Institut für Informatik und angewandte Mathematik, Universität Bern (1997)

    Google Scholar 

  48. Marzetta, M.: Predicative theories of types and names, Ph.D. thesis, Institut für Informatik und angewandte Mathematik, Universität Bern (1994)

    Google Scholar 

  49. Minari, P.: Axioms for universes, Handwritten Notes?

    Google Scholar 

  50. Rathjen, M.: Monotone inductive definitions in explicit mathematics. J. Symb. Logic 61(1), 125–146 (1996)

    MathSciNet  CrossRef  MATH  Google Scholar 

  51. Rathjen, M.: Explicit mathematics with the monotone fixed point principle. J. Symb. Logic 63(2), 509–542 (1998)

    MathSciNet  CrossRef  MATH  Google Scholar 

  52. Rathjen, M.: Explicit mathematics with the monotone fixed point principle. ii: models. J. Symb. Logic 64(2), 517–550 (1999)

    MathSciNet  CrossRef  MATH  Google Scholar 

  53. Rathjen, M.: Explicit mathematics with monotone inductive definitions: a survey. In: Sieg, W., Sommer, R., Talcott, C. (eds.) Reflections on the Foundations of Mathematics: Essays in Honor of Solomon Feferman, Lecture Notes in Logic, Association for Symbolic Logic, vol. 15, pp. 329–346 (2002)

    Google Scholar 

  54. Rathjen, M.: Relativized ordinal analysis: the case of power Kripke-Platek set theory. Ann. Pure Appl. Logic 165(1), 316–339 (2014)

    MathSciNet  CrossRef  MATH  Google Scholar 

  55. Rathjen, M.: Power Kripke-Platek set theory and the axiom of choice, Annals of Pure and Applied Logic (submitted)

    Google Scholar 

  56. Sato, K.: A new model construction by making a detour via intuitionistic theories II: interpretability lower bound of Feferman’s explicit mathematics \( {T}_0\). Ann. Pure Appl. Logic 166(7–8), 800–835 (2015)

    MathSciNet  CrossRef  MATH  Google Scholar 

  57. Sato, K., Zumbrunnen, R.: A new model construction by making a detour via intuitionistic theories I: operational set theory without choice is \({\prod } _{1}\)-equivalent to \( KP\). Ann. Pure Appl. Logic 166(2), 121–186 (2015)

    Google Scholar 

  58. Scott, D.S.: Identity and existence in formal logic. In: Fourman, M., Mulvey, C., Scott, D. (eds.), Applications of Sheaves. Lecture Notes in Mathematics, vol. 753, pp. 660–696. Springer, Berlin (1979)

    Google Scholar 

  59. Simpson, S.G.: Subsystems of Second Order Arithmetic. Perspectives in Logic, Association for Symbolic Logic, 2nd edn. Cambridge University Press, Cambridge (2009)

    CrossRef  MATH  Google Scholar 

  60. Takahashi, S.: Monotone inductive definitions in a constructive theory of functions and classes. Ann. Pure Appl. Logic 42(3), 255–297 (1989)

    MathSciNet  CrossRef  MATH  Google Scholar 

  61. Troelstra, A.S., van Dalen, D.: Constructivism in Mathematics, I. Studies in Logic and the Foundations of Mathematics, vol. 121. Elsevier, Amsterdam (1988)

    MATH  Google Scholar 

  62. Troelstra, A.S., van Dalen, D.: Constructivism in Mathematics, II. Studies in Logic and the Foundations of Mathematics, vol. 123. Elsevier, Amsterdam (1988)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gerhard Jäger .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2017 Springer International Publishing AG, part of Springer Nature

About this chapter

Verify currency and authenticity via CrossMark

Cite this chapter

Jäger, G. (2017). The Operational Penumbra: Some Ontological Aspects. In: Jäger, G., Sieg, W. (eds) Feferman on Foundations. Outstanding Contributions to Logic, vol 13. Springer, Cham. https://doi.org/10.1007/978-3-319-63334-3_10

Download citation