Skip to main content

Investigating Alzheimer’s Disease Candidate Genes Based on Combined Network Using Subnetwork Extraction Algorithms

  • Conference paper
  • First Online:
Intelligent Computing Theories and Application (ICIC 2017)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 10362))

Included in the following conference series:

  • 2083 Accesses

Abstract

There is increasing need for accurate Alzheimer’s disease (AD) related genes prediction to inform study design, but available genes estimates are limited. In this study, the subnetwork extraction algorithms were applied to extract subnetworks and mine candidate genes based on a combined network, which was constructed by integrating the information of protein-protein interactions and gene-gene co-expression network. We obtained seven candidate genes with high possibility during AD progression. The application of subnetwork extraction algorithms based on combined network would provide a new insight into predicting the AD-related genes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Alzheimer’s Disease International, World Alzheimer Report 2016. London: Alzheimer’s Disease International (2016)

    Google Scholar 

  2. Nicolas, G., Charbonnier, C., Campion, D.: From common to rare variants: the genetic component of Alzheimer disease. Hum. Hered. 81(3), 129–141 (2016). doi:10.1159/000452256

  3. Vidal, M., Cusick Michael, E., Barabási, A.-L.: Interactome networks and human disease. Cell 144(6), 986–998 (2011). doi:10.1016/j.cell.2011.02.016

    Article  Google Scholar 

  4. Sun, G.P., Jiang, T., Xie, P.F., et al.: Identification of the disease-associated genes in periodontitis using the co-expression network. Mol. Biol. (Mosk) 50(1), 143–150 (2016). doi:10.7868/s0026898416010195

    Article  Google Scholar 

  5. Zheng, S., Zhao, Z.: GenRev: exploring functional relevance of genes in molecular networks. Genomics 99(3), 183-188. doi:10.1016/j.ygeno.2011.12.005

  6. Webster, J.A., Gibbs, J.R., Clarke, J., et al.: Genetic control of human brain transcript expression in Alzheimer disease. Am. J. Hum. Genet. 84(4), 445–458 (2009). doi:10.1016/j.ajhg.2009.03.011

    Article  Google Scholar 

  7. Franceschini, A., Szklarczyk, D., Frankild, S., et al.: STRING v9.1: protein-protein interaction networks, with increased coverage and integration. Nucleic Acids Res. 41(Database issue), D808–D815 (2013). doi:10.1093/nar/gks1094

  8. Amberger, J.S., Bocchini, C.A., Schiettecatte, F., et al.: OMIM.org: Online Mendelian Inheritance in Man (OMIM(R)), an online catalog of human genes and genetic disorders. Nucleic Acids Res. 43(Database issue), D789–D798 (2015). doi:10.1093/nar/gku1205

  9. Bertram, L., McQueen, M.B., Mullin, K., et al.: Systematic meta-analyses of Alzheimer disease genetic association studies: the AlzGene database. Nat. Genet. 39(1), 17–23 (2007). doi:10.1038/ng1934

    Article  Google Scholar 

  10. Bai, Z., Han, G., Xie, B., et al.: AlzBase: an integrative database for gene dysregulation in Alzheimer’s disease. Mol. Neurobiol. 53(1), 310–319 (2016). doi:10.1007/s12035-014-9011-3

    Article  Google Scholar 

  11. Consortium TU, UniProt: the universal protein knowledgebase. Nucleic Acids Res. 45(D1), D158–D169 (2017). doi:10.1093/nar/gkw1099

  12. Langfelder PHorvath S, WGCNA: an R package for weighted correlation network analysis. BMC Bioinform. 9, 559 (2008). doi:10.1186/1471-2105-9-559

  13. Mills, J.D., Nalpathamkalam, T., Jacobs, H.I., et al.: RNA-Seq analysis of the parietal cortex in Alzheimer’s disease reveals alternatively spliced isoforms related to lipid metabolism. Neurosci. Lett. 536, 90–95 (2013). doi:10.1016/j.neulet.2012.12.042

    Article  Google Scholar 

  14. Windisch, M., Hutter-Paier, B., Rockenstein, E., et al.: Development of a new treatment for Alzheimer’s disease and Parkinson’s disease using anti-aggregatory beta-synuclein-derived peptides. J. Mol. Neurosci. 19(1–2), 63–69 (2002). doi:10.1007/s12031-002-0012-8

    Article  Google Scholar 

  15. Obulesu, M., Lakshmi, M.J.: Apoptosis in Alzheimer’s disease: an understanding of the physiology, pathology and therapeutic avenues. Neurochem Res. 39(12), 2301–12 (2014). doi:10.1007/s11064-014-1454-4

  16. Hoerndli, F.J., Pelech, S., Papassotiropoulos, A., et al.: Aβ treatment and P301L tau expression in an Alzheimer’s disease tissue culture model act synergistically to promote aberrant cell cycle re-entry. Eur. J. Neurosci. 26(1), 60–72 (2007). doi:10.1111/j.1460-9568.2007.05618.x

    Article  Google Scholar 

  17. Olmos-Alonso, A., Schetters, S.T., Sri, S., et al.: Pharmacological targeting of CSF1R inhibits microglial proliferation and prevents the progression of Alzheimer’s-like pathology. Brain 139(Pt 3), 891–907 (2016). doi:10.1093/brain/awv379

    Article  Google Scholar 

  18. Spencer, K.L., Olson, L.M., Schnetz-Boutaud, N., et al.: Dissection of chromosome 16p12 linkage peak suggests a possible role for CACNG3 variants in age-related macular degeneration susceptibility. Invest. Ophthalmol. Vis. Sci. 52(3), 1748–1754 (2011). doi:10.1167/iovs.09-5112

    Article  Google Scholar 

  19. Kurozumi, A., Goto, Y., Matsushita, R., et al.: Tumor-suppressive microRNA-223 inhibits cancer cell migration and invasion by targeting ITGA3/ITGB1 signaling in prostate cancer. Cancer Sci. 107(1), 84–94 (2016). doi:10.1111/cas.12842

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by National Natural Science Foundation of China (61672037 and 21601001), the Initial Foundation of Doctoral Scientific Research in Anhui University (J01001319), and Anhui Provincial Outstanding Young Talent Support Plan (No. gxyqZD2017005).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yannan Bin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Wang, X., Yan, H., Zhang, D., Zhao, L., Bin, Y., Xia, J. (2017). Investigating Alzheimer’s Disease Candidate Genes Based on Combined Network Using Subnetwork Extraction Algorithms. In: Huang, DS., Jo, KH., Figueroa-García, J. (eds) Intelligent Computing Theories and Application. ICIC 2017. Lecture Notes in Computer Science(), vol 10362. Springer, Cham. https://doi.org/10.1007/978-3-319-63312-1_49

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-63312-1_49

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-63311-4

  • Online ISBN: 978-3-319-63312-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics