Turrigiano, G.G., Leslie, K.R., Desai, N.S., Rutherford, L.C., Nelson, S.B.: Activity-dependent scaling of quantal amplitude in neocortical neurons. Nature 391(6670), 892–896 (1998)
CrossRef
Google Scholar
Hebb, D.O.: The Organization of Behavior: A Neuropsychological Theory. Wiley, New York (1949)
Google Scholar
Lømo, T.: Frequency potentiation of excitatory synaptic activity in dentate area of hippocampal formation. Acta Physiol. Scand. 68(Suppl 277), 128 (1966)
Google Scholar
Bliss, T.V., Lømo, T.: Plasticity in a monosynaptic cortical pathway. J. Physiol. 207(2), 61P (1970)
Google Scholar
Bliss, T.V.P., Lømo, T.: Long-lasting potentiation of synaptic transmission in the dentate area of the anaesthetized rabbit following stimulation of the perforant path. J. Physiol. 232(2), 331–356 (1973)
CrossRef
Google Scholar
Douglas, R.M., Goddard, G.V.: Long-term potentiation of the perforant path-granule cell synapse in the rat hippocampus. Brain Res. 86(2), 205–215 (1975)
CrossRef
Google Scholar
Steinbuch, K., Jaenicke, W., Reiner, H.: Learning matrix. C.I.P. Office (1965). http://brevets-patents.ic.gc.ca/opic-cipo/cpd/eng/patent/717227/summary.html
Willshaw, D.J., Buneman, O.P., Longuet-Higgins, H.C.: Non-holographic associative memory. Nature 222, 960–962 (1969)
CrossRef
Google Scholar
Kohonen, T.: Correlation matrix memories. IEEE Trans. Comput. C-21(4), 353–359 (1972)
CrossRef
MATH
Google Scholar
Hopfield, J.J.: Neural networks and physical systems with emergent collective computational abilities. Proc. Natl. Acad. Sci. U.S.A. 79(8), 2554–2558 (1982)
MathSciNet
CrossRef
Google Scholar
Markram, H., Lübke, J., Frotscher, M., Sakmann, B.: Regulation of synaptic efficacy by coincidence of postsynaptic APs and EPSPs. Science 275(5297), 213–215 (1997)
CrossRef
Google Scholar
Bi, G.Q., Poo, M.M.: Synaptic modifications in cultured hippocampal neurons: dependence on spike timing, synaptic strength, and postsynaptic cell type. J. Neurosci. 18(24), 10464–10472 (1998)
Google Scholar
Bi, G.Q., Poo, M.M.: Synaptic modification by correlated activity: Hebb’s postulate revisited. Annu. Rev. Neurosci. 24(1), 139–166 (2001)
CrossRef
Google Scholar
Golding, N.L., Staff, N.P., Spruston, N.: Dendritic spikes as a mechanism for cooperative long-term potentiation. Nature 418(6895), 326–331 (2002)
CrossRef
Google Scholar
Häusser, M., Mel, B.: Dendrites: bug or feature? Curr. Opin. Neurobiol. 13(3), 372–383 (2003)
CrossRef
Google Scholar
Froemke, R.C., Letzkus, J.J., Kampa, B.M., Hang, G.B., Stuart, G.J.: Dendritic synapse location and neocortical spike-timing-dependent plasticity. Front. Syn. Neurosci. 2, 29 (2010)
Google Scholar
Letzkus, J.J., Kampa, B.M., Stuart, G.J.: Learning rules for spike timing-dependent plasticity depend on dendritic synapse location. J. Neurosci. 26(41), 10420–10429 (2006)
CrossRef
Google Scholar
Sjöström, P.J., Rancz, E.A., Roth, A., Häusser, M.: Dendritic excitability and synaptic plasticity. Physiol. Rev. 88(2), 769–840 (2008)
CrossRef
Google Scholar
Wittenberg, G.M., Wang, S.S.H.: Malleability of spike-timing-dependent plasticity at the CA3–CA1 synapse. J. Neurosci. 26(24), 6610–6617 (2006)
CrossRef
Google Scholar
Buchanan, K.A., Mellor, J.R.: The activity requirements for spike timing-dependent plasticity in the hippocampus. Front. Syn. Neurosci. 2, 11 (2010)
CrossRef
Google Scholar
Volterra, A., Liaudet, N., Savtchouk, I.: Astrocyte Ca2+ signalling: an unexpected complexity. Nat. Rev. Neurosci. 15(5), 327–335 (2014)
CrossRef
Google Scholar
Magistretti, P.J., Allaman, I.: A cellular perspective on brain energy metabolism and functional imaging. Neuron 86(4), 883–901 (2015)
CrossRef
Google Scholar
Dossi, E., Vasile, F., Rouach, N.: Human astrocytes in the diseased brain. Brain Res. Bull. (2017, in Press)
Google Scholar
De Pittà, M., Brunel, N.: Modulation of synaptic plasticity by glutamatergic gliotransmission: a modeling study. Neural Plast. 2016, 7607924 (2016)
CrossRef
Google Scholar
Bushong, E.A., Martone, M.E., Jones, Y.Z., Ellisman, M.H.: Protoplasmic astrocytes in CA1 stratum radiatum occupy separate anatomical domains. J. Neurosci. 22(1), 183–192 (2002)
Google Scholar
Pirttimaki, T.M., Hall, S.D., Parri, H.R.: Sustained neuronal activity generated by glial plasticity. J. Neurosci. 31(21), 7637–7647 (2011)
CrossRef
Google Scholar
Manninen, T., Havela, R., Linne, M.L.: Computational models of astrocytes and astrocyte-neuron interactions: characterization, reproducibility, and future perspectives. In: De Pittà, M., Berry, H. (eds.) Computational Glioscience. Springer (2017, in Press)
Google Scholar
Manninen, T., Havela, R., Linne, M.L.: Reproducibility and comparability of computational models for astrocyte calcium excitability. Front. Neuroinform. 11, 11 (2017)
CrossRef
Google Scholar
Tewari, S., Majumdar, K.: A mathematical model for astrocytes mediated LTP at single hippocampal synapses. J. Comput. Neurosci. 33(2), 341–370 (2012)
MathSciNet
CrossRef
Google Scholar
Tewari, S.G., Majumdar, K.K.: A mathematical model of the tripartite synapse: astrocyte-induced synaptic plasticity. J. Biol. Phys. 38(3), 465–496 (2012)
CrossRef
Google Scholar
Pinsky, P.F., Rinzel, J.: Intrinsic and network rhythmogenesis in a reduced Traub model for CA3 neurons. J. Comput. Neurosci. 1(1), 39–60 (1994)
CrossRef
Google Scholar
Sarid, L., Bruno, R., Sakmann, B., Segev, I., Feldmeyer, D.: Modeling a layer 4-to-layer 2/3 module of a single column in rat neocortex: interweaving in vitro and in vivo experimental observations. Proc. Natl. Acad. Sci. U.S.A. 104(41), 16353–16358 (2007)
CrossRef
Google Scholar
Zachariou, M., Alexander, S.P.H., Coombes, S., Christodoulou, C.: A biophysical model of endocannabinoid-mediated short term depression in hippocampal inhibition. PLoS ONE 8(3), e58296 (2013)
CrossRef
Google Scholar
Politi, A., Gaspers, L.D., Thomas, A.P., Höfer, T.: Models of IP3 and Ca2+ oscillations: frequency encoding and identification of underlying feedbacks. Biophys. J. 90(9), 3120–3133 (2006)
CrossRef
Google Scholar
Destexhe, A., Mainen, Z.F., Sejnowski, T.J.: Kinetic models of synaptic transmission. In: Koch, C., Segev, I. (eds.) Methods in Neuronal Modeling, pp. 1–25. MIT Press, Cambridge (1998)
Google Scholar
Kim, B., Hawes, S.L., Gillani, F., Wallace, L.J., Blackwell, K.T.: Signaling pathways involved in striatal synaptic plasticity are sensitive to temporal pattern and exhibit spatial specificity. PLoS Comput. Biol. 9(3), e1002953 (2013)
CrossRef
Google Scholar
De Young, G.W., Keizer, J.: A single-pool inositol 1,4,5-trisphosphate-receptor-based model for agonist-stimulated oscillations in Ca2+ concentration. Proc. Natl. Acad. Sci. U.S.A. 89(20), 9895–9899 (1992)
CrossRef
Google Scholar
Li, Y.X., Rinzel, J.: Equations for InsP3 receptor-mediated [Ca2+]i oscillations derived from a detailed kinetic model: a Hodgkin-Huxley like formalism. J. Theor. Biol. 166(4), 461–473 (1994)
CrossRef
Google Scholar
Wade, J., McDaid, L., Harkin, J., Crunelli, V., Kelso, S.: Self-repair in a bidirectionally coupled astrocyte-neuron (AN) system based on retrograde signaling. Front. Comput. Neurosci. 6, 76 (2012)
CrossRef
Google Scholar
Nadkarni, S., Jung, P.: Spontaneous oscillations of dressed neurons: a new mechanism for epilepsy? Phys. Rev. Lett. 91(26), 268101 (2003)
CrossRef
Google Scholar
Zenke, F., Agnes, E.J., Gerstner, W.: Diverse synaptic plasticity mechanisms orchestrated to form and retrieve memories in spiking neural networks. Nature Commun. 6, 6922 (2015)
CrossRef
Google Scholar
Furber, S.: Large-scale neuromorphic computing systems. J. Neural Eng. 13(5), 051001 (2016)
CrossRef
Google Scholar