Lowe, D.G.: Object recognition from local scale-invariant features. In: The Proceedings of the Seventh IEEE International Conference on Computer Vision, p. 1150 (1999). doi:10.1109/ICCV.1999.790410
Dalal, N., Triggs, B.: Histograms of oriented gradients for human detection. In: IEEE Computer Society Conference on Computer Vision and Pattern Recognition, vol. 1, pp. 886–893. IEEE (2005). doi:10.1109/CVPR.2005.177
Lecun, Y., Boser, B., Denker, J.S., et al.: Backpropagation applied to handwritten zip code recognition. Neural Comput. 1(4), 541–551 (1989). doi:10.1162/neco.1989.1.4.541
CrossRef
Google Scholar
Yu, K., Jia, L., Chen, Y., Xu, W.: Deep learning: yesterday, today, and tomorrow. J. Comput. Res. Dev. 50(9), 1799–1804 (2013). doi:10.7544/issn1000-1239.2013.20131180
Google Scholar
LeCun, Y., Bottou, L., Bengio, Y., et al.: Gradient-based learning applied to document recognition. Proc. IEEE 86(11), 2278–2324 (1998). doi:10.1109/5.726791
CrossRef
Google Scholar
Lin, M., Chen, Q., Yan, S.: Network in network. arXiv preprint arXiv:1312.4400, 2013
Baldi, P., Zhiqin, L.: Complex-valued autoencoders. Neural Netw. 33(3), 136–147 (2012). doi:10.1016/j.neunet.2012.04.011
CrossRef
MATH
Google Scholar
Zhang, W., Xu, Y., Ni, J., et al.: Image target recognitions method based on multi-scale block convolutional neural network. J. Comput. Appl. 1033–1038 (2016). doi:10.11772/j.issn.1001-9081.2016.04.1033
Wang, G., Xu, J.: Fast feature representation method based on multi-level pyramid convolution neural network. Appl. Res. Comput. 32(8), 2492–2495 (2015). doi:10.3969/j.issn.1001-3695.2015.08.061
Google Scholar
Simoncelli, E.P., Heeger, D.J.: A model of neuronal responses in visual area MT. Vis. Res. (1998). doi:10.1016/S0042-6989(97)00183-1
Google Scholar
Hyvärinen, A., Köster, U.: Complex cell pooling and the statistics of natural images. Netw. Comput. Neural Syst. 18(2), 81–100 (2007). doi:10.1080/09548980701418942
MathSciNet
CrossRef
Google Scholar
Bruna, J., Szlam, A., Lecun, Y.: Signal recovery from pooling representations. In: ICML (2014)
Google Scholar
Gulcehre, C., Cho, K., Pascanu, R., Bengio, Y.: Learned-norm pooling for deep feedforward and recurrent neural networks. In: Calders, T., Esposito, F., Hüllermeier, E., Meo, R. (eds.) ECML PKDD 2014. LNCS, vol. 8724, pp. 530–546. Springer, Heidelberg (2014). doi:10.1007/978-3-662-44848-9_34
Google Scholar
Yu, D., Wang, H., Chen, P., Wei, Z.: Mixed pooling for convolutional neural networks. Rough Sets Knowl. Technol. (2014). doi:10.1007/978-3-319-11740-9_34
Hinton, G.E., Srivastava, N., Krizhevsky, A., Sutskever, I., Salakhutdinov, R.R.: Improving neural networks by preventing co-adaptation of feature detectors. arXiv preprint arXiv:1207.0580 (2012)
Wan, L., Zeiler, M., Zhang, S., Cun, Y.L., Fergus, R.: Regularization of neural networks using dropconnect. In: ICML (2013)
Google Scholar
Zeiler, M.D., Fergus, R.: Stochastic pooling for regularization of deep convolutional neural networks. CoRR (2013)
Google Scholar
He, K., Zhang, X., Ren, S., Sun, J.: Spatial pyramid pooling in deep convolutional networks for visual recognition. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8691, pp. 346–361. Springer, Cham (2014). doi:10.1007/978-3-319-10578-9_23
Google Scholar
Gulcehre, C., Moczulski, M., Denil, M., et al.: Noisy activation functions. In: International Conference on Machine Learning (2016)
Google Scholar
Nair, V., Hinton, G.E.: Rectified linear units improve restricted Boltzmann machines Vinod Nair. In: ICML, pp. 807–814 (2014)
Google Scholar
Glorot, X., Bordes, A., Bengio, Y.: Deep sparse rectifier neural networks. In: International Conference on Artificial Intelligence and Statistics (2011)
Google Scholar
Xu, B., Wang, N., Chen, T., Li, M.: Empirical evaluation of rectified activations in convolutional network. arXiv preprint arXiv:1505.00853 (2015)
He, K., Zhang, X., Ren, S., Sun, J.: Delving deep into rectifiers: surpassing human-level performance on ImageNet classification. arXiv preprint arXiv:1502.01852 (2015). doi:10.1109/iccv.2015.123
Clevert, D.-A., Unterthiner, T., Hochreiter, S.: Fast and accurate deep network learning by exponential linear units (ELUs). arXiv preprint arXiv:1511.07289 (2015)
Li, Y., Fan, C., Li, Y., et al.: Improving deep neural network with multiple parametric exponential linear units. arXiv preprint arXiv:1606.00305 (2016)
Maas, A.L., Hannun, A.Y., Ng, A.Y.: Rectifier nonlinearities improve neural network acoustic models. In: ICML (2013)
Google Scholar
LeCun, Y., Denker, J.S., Henderson, D., et al.: Handwritten digit recognition with a back-propagation network. In: Advances in Neural Information Processing Systems, Colorado, USA, pp. 396–404 (1994)
Google Scholar
LeCun, Y., Cortes, C.: MNIST handwritten digit database (2010). http://yann.lecun.com/esdb/mnist
Sermanet, P., Chintala, S., Lecun, Y.: Convolutional neural networks applied to house numbers digit classification. In: International Conference on Pattern Recognition, pp. 3288–3291. IEEE (2012)
Google Scholar
Yang, Z., Tao, D., Zhang, S., et al.: Similar handwritten chinese character recognition based on deep neural networks with big data. J. Commun. 35(9), 184–189 (2014). doi:10.33969/.j.issn.1000-436x.2014.09.019
Google Scholar
Zhao, Z., Yang, S., Ma, Z.: Lincese plate character recongnition based on convolutional neural network LeNet-5. J. Syst. Simul. 22(3), 638–641 (2010). doi:10.16182/j.cnki.joss.2010.03.040
Google Scholar
Taigman, Y., Yang, M., Ranzato, M.A., et al.: Deepface: closing the gap to human-level performance in face verification. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 1701–1708 (2014). doi:10.1109/cvpr.2014.220
Sun, Y., Wang, X., Tang, X.: Deep learning face representation from predicting 10,000 classes. In: 2014 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 1891–1898. IEEE (2014). doi:10.1109/cvpr.2014.244
Sun, Y., Chen, Y., Wang, X., et al.: Deep learning face representation by joint identification-verification. In: Advances in Neural Information Processing Systems, pp. 1988–1996 (2014)
Google Scholar
Sun, Y., Wang, X., Tang, X.: Deeply learned face representations are sparse, selective, and robust. arXiv preprint arXiv:1412.1265 (2014). doi:10.1109/cvpr.2015.7298907
Sun, Y., Liang, D., Wang, X., et al.: DeepID3: face recognition with very deep neural networks. arXiv preprint arXiv:1502.00873 (2015)
Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. arXiv preprint arXiv:1409.1556 (2014)
Szegedy, C., Liu, W., Jia, Y., et al.: Going deeper with convolutions. arXiv preprint arXiv:1409.4842 (2014). doi:10.1109/cvpr.2015.7298594
Schroff, F., Kalenichenko, D., Philbin, J.: FaceNet: a unified embedding for face recognition and clustering. arXiv preprint arXiv:1503.03832 (2015). doi:10.1109/cvpr.2015.7298682