Hypothalamic Dysfunction in Obesity and Metabolic Disorders

Part of the Advances in Neurobiology book series (NEUROBIOL, volume 19)


The hypothalamus is the brain region responsible for the maintenance of energetic homeostasis. The regulation of this process arises from the ability of the hypothalamus to orchestrate complex physiological responses such as food intake and energy expenditure, circadian rhythm, stress response, and fertility. Metabolic alterations such as obesity can compromise these hypothalamic regulatory functions. Alterations in circadian rhythm, stress response, and fertility further contribute to aggravate the metabolic dysfunction of obesity and contribute to the development of chronic disorders such as depression and infertility.

At cellular level, obesity caused by overnutrition can damage the hypothalamus promoting inflammation and impairing hypothalamic neurogenesis. Furthermore, hypothalamic neurons suffer apoptosis and impairment in synaptic plasticity that can compromise the proper functioning of the hypothalamus. Several factors contribute to these phenomena such as ER stress, oxidative stress, and impairments in autophagy. All these observations occur at the same time and it is still difficult to discern whether inflammatory processes are the main drivers of these cellular dysfunctions or if the hypothalamic hormone resistance (insulin, leptin, and ghrelin) can be pinpointed as the source of several of these events.

Understanding the mechanisms that underlie the pathophysiology of obesity in the hypothalamus is crucial for the development of strategies that can prevent or attenuate the deleterious effects of obesity.


Hypothalamus Obesity Energy expenditure Food intake Circadian rhythm Stress response Fertility 



This work was funded by the European Regional Development Fund (ERDF), through the Centro 2020 Regional Operational Programme: project CENTRO-01-0145-FEDER-000012-HealthyAging2020, the COMPETE 2020—Operational Programme for Competitiveness and Internationalisation, and the Portuguese national funds via FCT—Fundação para a Ciência e a Tecnologia, I.P.: project POCI-01-0145-FEDER-007440, Strategic Project UID/NEU/04539/201, and fellowship SFRH/BD/89035/2012.


  1. Achermann P, Borbély AA (2003) Mathematical models in sleep deprivation. Front Biosci 8:s683–s693PubMedCrossRefGoogle Scholar
  2. Adam TC, Epel ES (2007) Stress, eating and the reward system. Physiol Behav 91:449–458PubMedCrossRefGoogle Scholar
  3. Adler ES, Hollis JH, Clarke IJ, Grattan DR, Oldfield BJ (2012) Neurochemical characterization and sexual dimorphism of projections from the brain to abdominal and subcutaneous white adipose tissue in the rat. J Neurosci 32:15913–15921PubMedCrossRefGoogle Scholar
  4. Ahima RS, Flier JS (2000) Adipose tissue as an endocrine organ. Trends Endocrinol Metab 11(8):327–332PubMedCrossRefGoogle Scholar
  5. Albrecht U (2012) Timing to perfection: the biology of central and peripheral circadian clocks. Neuron 74:246–260PubMedCrossRefGoogle Scholar
  6. Alempijevic T, Dragasevic S, Zec S, Popovic D, Milosavljevic T (2017) Non-alcoholic fatty pancreas disease. Postgrad Med J 93(1098):226–230PubMedCrossRefGoogle Scholar
  7. Alves MG, Jesus TT, Sousa M, Goldberg E, Silva BM, Oliveira PF (2016) Male fertility and obesity: are ghrelin, leptin and glucagon-like peptide-1 pharmacologically relevant? Curr Pharm Des 22:783–791PubMedCrossRefGoogle Scholar
  8. Anand BK, Brobeck JR (1951a) Localization of a “feeding center” in the hypothalamus of the rat. Proceedings of the Society for Experimental Biology and Medicine. Soc Exp Biol Med 77:323–324CrossRefGoogle Scholar
  9. Anand BK, Brobeck JR (1951b) Hypothalamic control of food intake in rats and cats. Yale J Biol Med 24:123–140PubMedPubMedCentralGoogle Scholar
  10. Arrieta-Cruz I, Gutiérrez-Juárez R (2016) The role of circulating amino acids in the hypothalamic regulation of liver glucose metabolism. Adv Nutr 7:790S–797SPubMedPubMedCentralCrossRefGoogle Scholar
  11. Arruda AP, Milanski M, Romanatto T, Solon C, Coope A, Alberici LC et al (2010) Hypothalamic actions of tumor necrosis factor alpha provide the thermogenic core for the wastage syndrome in cachexia. Endocrinology 151:683–694PubMedCrossRefGoogle Scholar
  12. Arruda AP, Milanski M, Coope A, Torsoni AS, Ropelle E, Carvalho DP, Carvalheira JB, Velloso LA (2011) Low-grade hypothalamic inflammation leads to defective thermogenesis, insulin resistance, and impaired insulin secretion. Endocrinology 152:1314–1326PubMedCrossRefGoogle Scholar
  13. Aveleira CA, Botelho M, Carmo-Silva S, Pascoal JF, Ferreira-Marques M, Nóbrega C et al (2015) Neuropeptide Y stimulates autophagy in hypothalamic neurons. Proc Natl Acad Sci 112:E1642–E1651PubMedPubMedCentralCrossRefGoogle Scholar
  14. Backholer K, Smith JT, Rao A, Pereira A, Iqbal J, Ogawa S, Li Q, Clarke IJ (2010) Kisspeptin cells in the ewe brain respond to leptin and communicate with neuropeptide Y and proopiomelanocortin cells. Endocrinology 151:2233–2243PubMedCrossRefGoogle Scholar
  15. Ballinger AB, Savage MO, Sanderson IR (2003) Delayed puberty associated with inflammatory bowel disease. Pediatr Res 53:205–210PubMedCrossRefGoogle Scholar
  16. Balsevich G, Uribe A, Wagner KV, Hartmann J, Santarelli S, Labermaier C, Schmidt MV (2014) Interplay between diet-induced obesity and chronic stress in mice: potential role of FKBP51. J Endocrinol 222:15–26PubMedCrossRefGoogle Scholar
  17. Bamshad M, Aoki VT, Adkison MG, Warren WS, Bartness TJ (1998) Central nervous system origins of the sympathetic nervous system outflow to white adipose tissue. Am J Phys 275:R291–R299Google Scholar
  18. Banks WA (2001) Leptin transport across the blood-brain barrier: implications for the cause and treatment of obesity. Curr Pharm Des 7:125–133PubMedCrossRefGoogle Scholar
  19. Banks WA, Farrell CL (2003) Impaired transport of leptin across the blood-brain barrier in obesity is acquired and reversible. Am J Physiol Endocrinol Metab 285:E10–E15PubMedCrossRefGoogle Scholar
  20. Banks WA, Jaspan JB, Huang W, Kastin AJ (1997) Transport of insulin across the blood-brain barrier: saturability at euglycemic doses of insulin. Peptides 18:1423–1429PubMedCrossRefGoogle Scholar
  21. Banks AS, Davis SM, Bates SH, Myers MG (2000) Activation of downstream signals by the long form of the leptin receptor. J Biol Chem 275:14563–14572PubMedCrossRefGoogle Scholar
  22. Banks WA, Coon AB, Robinson SM, Moinuddin A, Shultz JM, Nakaoke R, Morley JE (2004) Triglycerides induce leptin resistance at the blood-brain barrier. Diabetes 53:1253–1260PubMedCrossRefGoogle Scholar
  23. Banks WA, Burney BO, Robinson SM (2008) Effects of triglycerides, obesity, and starvation on ghrelin transport across the blood-brain barrier. Peptides 29:2061–2065PubMedPubMedCentralCrossRefGoogle Scholar
  24. Banting FG, Best CH, Macleod JJR (1922) The internal secretion of the pancreas. Am J Physiol 59:479Google Scholar
  25. Baran K, Preston E, Wilks D, Cooney GJ, Kraegen EW, Sainsbury A (2002) Chronic central melanocortin-4 receptor antagonism and central neuropeptide-Y infusion in rats produce increased adiposity by divergent pathways. Diabetes 51:152–158PubMedCrossRefGoogle Scholar
  26. Barker-Gibb ML, Scott CJ, Boublik JH, Clarke IJ (1995) The role of neuropeptide Y (NPY) in the control of LH secretion in the ewe with respect to season, NPY receptor subtype and the site of action in the hypothalamus. J Endocrinol 147:565–579PubMedCrossRefGoogle Scholar
  27. Barsh GS, Schwartz MW (2002) Genetic approaches to studying energy balance: perception and integration. Nat Rev Genet 3:589–600PubMedGoogle Scholar
  28. Bartness TJ, Kay Song C, Shi H, Bowers RR, Foster MT (2005) Brain-adipose tissue cross talk. Proc Nutr Soc 64:53–64PubMedCrossRefGoogle Scholar
  29. Baskin DG, Figlewicz Lattemann D, Seeley RJ, Woods SC, Porte D, Schwartz MW (1999) Insulin and leptin: dual adiposity signals to the brain for the regulation of food intake and body weight. Brain Res 848:114–123PubMedCrossRefGoogle Scholar
  30. Beard RS, Haines RJ, Wu KY, Reynolds JJ, Davis SM, Elliott JE et al (2014) Non-muscle Mlck is required for β-catenin- and FoxO1-dependent downregulation of Cldn5 in IL-1β-mediated barrier dysfunction in brain endothelial cells. J Cell Sci 127:1840–1853PubMedPubMedCentralCrossRefGoogle Scholar
  31. Belda X, Fuentes S, Daviu N, Nadal R, Armario A (2015) Stress-induced sensitization: the hypothalamic–pituitary–adrenal axis and beyond. Stress 18:269–279PubMedCrossRefGoogle Scholar
  32. Belgardt BF, Bruning JC (2010) CNS leptin and insulin action in the control of energy homeostasis. Ann N Y Acad Sci 1212:97–113PubMedCrossRefGoogle Scholar
  33. Belgardt BF, Mauer J, Bruning JC (2010) Novel roles for JNK1 in metabolism. Aging (Albany NY) 2(9):621–626CrossRefGoogle Scholar
  34. Benani A, Troy S, Carmona MC, Fioramonti X, Lorsignol A, Leloup C, Casteilla L, Penicaud L (2007) Role for mitochondrial reactive oxygen species in brain lipid sensing: redox regulation of food intake. Diabetes 56:152–160PubMedCrossRefGoogle Scholar
  35. Benite-Ribeiro SA, Putt DA, Soares-Filho MC, Santos JM (2016) The link between hypothalamic epigenetic modifications and long-term feeding control. Appetite 107:445–453PubMedCrossRefGoogle Scholar
  36. Benoit SC, Air EL, Coolen LM, Strauss R, Jackman A, Clegg DJ, Seeley RJ, Woods SC (2002) The catabolic action of insulin in the brain is mediated by melanocortins. J Neurosci 22:9048–9052PubMedGoogle Scholar
  37. Betley JN, Xu S, Cao ZFH, Gong R, Magnus CJ, Yu Y, Sternson SM (2015) Neurons for hunger and thirst transmit a negative-valence teaching signal. Nature 521:180–185PubMedPubMedCentralCrossRefGoogle Scholar
  38. Biddinger SB, Kahn CR (2006) FROM MICE TO MEN: insights into the insulin resistance syndromes. Annu Rev Physiol 68:123–158PubMedCrossRefGoogle Scholar
  39. Bingham NC, Anderson KK, Reuter AL, Stallings NR, Parker KL (2008) Selective loss of leptin receptors in the ventromedial hypothalamic nucleus results in increased adiposity and a metabolic syndrome. Endocrinology 149(5):2138–2148PubMedPubMedCentralCrossRefGoogle Scholar
  40. Bisschop PH, Fliers E, Kalsbeek A (2014) Autonomic regulation of hepatic glucose production. In: Comprehensive physiology. John Wiley & Sons, Inc., Hoboken, NJ, pp 147–165CrossRefGoogle Scholar
  41. Bjørbaek C, El-Haschimi K, Frantz JD, Flier JS (1999) The role of SOCS-3 in leptin signaling and leptin resistance. J Biol Chem 274:30059–30065PubMedCrossRefGoogle Scholar
  42. Blancas-Velazquez A, Mendoza J, Garcia AN, la Fleur SE (2017) Diet-induced obesity and circadian disruption of feeding behavior. Front Neurosci 11:23PubMedPubMedCentralCrossRefGoogle Scholar
  43. Blouet C, Schwartz GJ (2010) Hypothalamic nutrient sensing in the control of energy homeostasis. Behav Brain Res 209:1–12PubMedCrossRefGoogle Scholar
  44. Borg WP, Sherwin RS, During MJ, Borg MA, Shulman GI (1995) Local ventromedial hypothalamus glucopenia triggers counterregulatory hormone release. Diabetes 44:180–184PubMedCrossRefGoogle Scholar
  45. Borg MA, Sherwin RS, Borg WP, Tamborlane WV, Shulman GI (1997) Local ventromedial hypothalamus glucose perfusion blocks counterregulation during systemic hypoglycemia in awake rats. J Clin Invest 99:361–365PubMedPubMedCentralCrossRefGoogle Scholar
  46. Borg ML, Omran SF, Weir J, Meikle PJ, Watt MJ (2012) Consumption of a high-fat diet, but not regular endurance exercise training, regulates hypothalamic lipid accumulation in mice. J Physiol 590:4377–4389PubMedPubMedCentralCrossRefGoogle Scholar
  47. Branecky KL, Niswender KD, Pendergast JS (2015) Disruption of daily rhythms by high-fat diet is reversible (N Cermakian, Ed). PLoS One 10:e0137970PubMedPubMedCentralCrossRefGoogle Scholar
  48. Briggs DI, Enriori PJ, Lemus MB, Cowley MA, Andrews ZB (2010) Diet-induced obesity causes ghrelin resistance in arcuate NPY/AgRP neurons. Endocrinology 151:4745–4755PubMedCrossRefGoogle Scholar
  49. Briggs DI, Lemus MB, Kua E, Andrews ZB (2011) Diet-induced obesity attenuates fasting-induced hyperphagia. J Neuroendocrinol 23:620–626PubMedCrossRefGoogle Scholar
  50. Briggs DI, Lockie SH, Wu Q, Lemus MB, Stark R, Andrews ZB (2013) Calorie-restricted weight loss reverses high-fat diet-induced ghrelin resistance, which contributes to rebound weight gain in a ghrelin-dependent manner. Endocrinology 154:709–717PubMedCrossRefGoogle Scholar
  51. Brown SA, Kowalska E, Dallmann R (2012) (Re)inventing the circadian feedback loop. Dev Cell 22(3):477–487Google Scholar
  52. Bruinstroop E, Fliers E, Kalsbeek A (2014) Hypothalamic control of hepatic lipid metabolism via the autonomic nervous system. Best Pract Res Clin Endocrinol Metab 28:673–684PubMedCrossRefGoogle Scholar
  53. Buckman LB, Thompson MM, Lippert RN, Blackwell TS, Yull FE, Ellacott KLJ (2015) Evidence for a novel functional role of astrocytes in the acute homeostatic response to high-fat diet intake in mice. Mol Metab 4:58–63PubMedCrossRefGoogle Scholar
  54. Buettner C, Camacho RC (2008) Hypothalamic control of hepatic glucose production and its potential role in insulin resistance. Endocrinol Metab Clin N Am 37:825–840CrossRefGoogle Scholar
  55. Buijs RM (2013) The autonomic nervous system. In: Handbook of clinical neurology, pp 1–11Google Scholar
  56. Butler D, Bahr BA (2006) Oxidative stress and lysosomes: CNS-related consequences and implications for lysosomal enhancement strategies and induction of autophagy. Antioxid Redox Signal 8:185–196PubMedCrossRefGoogle Scholar
  57. Butler AA, Cone RD (2002) The melanocortin receptors: lessons from knockout models. Neuropeptides 36:77–84PubMedCrossRefGoogle Scholar
  58. Calegari VC, Torsoni AS, Vanzela EC, Araújo EP, Morari J, Zoppi CC, Sbragia L, Boschero AC, Velloso LA (2016) Inflammation of the hypothalamus leads to defective pancreatic islet function. J Biol Chem 291:26935–26935PubMedPubMedCentralCrossRefGoogle Scholar
  59. Cancello R, Tounian A, Poitou C, Clément K (2004) Adiposity signals, genetic and body weight regulation in humans. Diabete Metab 30:215–227PubMedCrossRefGoogle Scholar
  60. Cano P, Jiménez-Ortega V, Larrad A, Reyes Toso CF, Cardinali DP, Esquifino AI (2008) Effect of a high-fat diet on 24-h pattern of circulating levels of prolactin, luteinizing hormone, testosterone, corticosterone, thyroid-stimulating hormone and glucose, and pineal melatonin content, in rats. Endocrine 33:118–125PubMedCrossRefGoogle Scholar
  61. Cao WH, Fan W, Morrison SF (2004) Medullary pathways mediating specific sympathetic responses to activation of dorsomedial hypothalamus. Neuroscience 126(1):229–240PubMedCrossRefGoogle Scholar
  62. Carvalheira JBC, Ribeiro EB, Araújo EP, Guimarães RB, Telles MM, Torsoni M, Gontijo JAR, Velloso LA, Saad MJA (2003) Selective impairment of insulin signalling in the hypothalamus of obese Zucker rats. Diabetologia 46:1629–1640PubMedCrossRefGoogle Scholar
  63. Catzeflis C, Pierroz DD, Rohner-Jeanrenaud F, Rivier JE, Sizonenko PC, Aubert ML (1993) Neuropeptide Y administered chronically into the lateral ventricle profoundly inhibits both the gonadotropic and the somatotropic axis in intact adult female rats. Endocrinology 132:224–234PubMedCrossRefGoogle Scholar
  64. Cavadas C, Aveleira CA, Souza GFP, Velloso LA (2016) The pathophysiology of defective proteostasis in the hypothalamus—from obesity to ageing. Nat Rev Endocrinol 12:723–733PubMedCrossRefGoogle Scholar
  65. Cazettes F, Cohen JI, Yau PL, Talbot H, Convit A (2011) Obesity-mediated inflammation may damage the brain circuit that regulates food intake. Brain Res 1373:101–109PubMedCrossRefGoogle Scholar
  66. Challet E (2015) Keeping circadian time with hormones. Diabetes Obes Metab 17:76–83PubMedCrossRefGoogle Scholar
  67. Chang A, Smith MC, Yin X, Fox RJ, Staugaitis SM, Trapp BD (2008) Neurogenesis in the chronic lesions of multiple sclerosis. Brain 131:2366–2375PubMedPubMedCentralCrossRefGoogle Scholar
  68. Chao PT, Yang L, Aja S, Moran TH, Bi S (2011) Knockdown of NPY expression in the dorsomedial hypothalamus promotes development of brown adipocytes and prevents diet-induced obesity. Cell Metab 13:573–583PubMedPubMedCentralCrossRefGoogle Scholar
  69. Chrousos GP, Torpy DJ, Gold PW (1998) Interactions between the hypothalamic-pituitary-adrenal axis and the female reproductive system: clinical implications. Ann Intern Med 129:229–240PubMedCrossRefGoogle Scholar
  70. Chun SK, Jo Y-H (2010) Loss of leptin receptors on hypothalamic POMC neurons alters synaptic inhibition. J Neurophysiol 104:2321–2328PubMedPubMedCentralCrossRefGoogle Scholar
  71. Clarke IJ, Arbabi L (2016) New concepts of the central control of reproduction, integrating influence of stress, metabolic state, and season. Domest Anim Endocrinol 56:S165–S179PubMedCrossRefGoogle Scholar
  72. Clarke IJ, Backholer K, Tilbrook AJ (2005) Y2 receptor-selective agonist delays the estrogen-induced luteinizing hormone surge in ovariectomized ewes, but Y1-receptor-selective agonist stimulates voluntary food intake. Endocrinology 146:769–775PubMedCrossRefGoogle Scholar
  73. Cleary MP, Bergstrom HM, Dodge TL, Getzin SC, Jacobson MK, Phillips FC (2001) Restoration of fertility in young obese (Lep(ob) Lep(ob)) male mice with low dose recombinant mouse leptin treatment. Int J Obes Relat Metab Disord 25:95–97PubMedCrossRefGoogle Scholar
  74. Clegg DJ, Gotoh K, Kemp C, Wortman MD, Benoit SC, Brown LM et al (2011) Consumption of a high-fat diet induces central insulin resistance independent of adiposity. Physiol Behav 103:10–16PubMedPubMedCentralCrossRefGoogle Scholar
  75. Clifford L, Dampney BW, Carrive P (2015) Spontaneously hypertensive rats have more orexin neurons in their medial hypothalamus than normotensive rats. Exp Physiol 100(4):388–398PubMedCrossRefGoogle Scholar
  76. Colombani A-L, Carneiro L, Benani A, Galinier A, Jaillard T, Duparc T et al (2009) Enhanced hypothalamic glucose sensing in obesity: alteration of redox signaling. Diabetes 58:2189–2197PubMedPubMedCentralCrossRefGoogle Scholar
  77. Contreras C, Gonzalez F, Fernø J, Diéguez C, Rahmouni K, Nogueiras R, López M (2015) The brain and brown fat. Ann Med 47:150–168PubMedCrossRefGoogle Scholar
  78. Coomans CP, Lucassen EA, Kooijman S, Fifel K, Deboer T, Rensen PCN, Michel S, Meijer JH (2015) Plasticity of circadian clocks and consequences for metabolism. Diabetes Obes Metab 17:65–75PubMedCrossRefGoogle Scholar
  79. Coppari R, Ichinose M, Lee CE, Pullen AE, Kenny CD, McGovern RA et al (2005) The hypothalamic arcuate nucleus: a key site for mediating leptin’s effects on glucose homeostasis and locomotor activity. Cell Metab 1:63–72PubMedCrossRefGoogle Scholar
  80. Cordero P, Campion J, Milagro FI, Goyenechea E, Steemburgo T, Javierre BM, Martinez JA (2011) Leptin and TNF-alpha promoter methylation levels measured by MSP could predict the response to a low-calorie diet. J Physiol Biochem 67:463–470PubMedCrossRefGoogle Scholar
  81. Correia MLG, Haynes WG, Rahmouni K, Morgan DA, Sivitz WI, Mark AL (2002) The concept of selective leptin resistance: evidence from agouti yellow obese mice. Diabetes 51:439–442PubMedCrossRefGoogle Scholar
  82. Coupé B, Ishii Y, Dietrich MO, Komatsu M, Horvath TL, Bouret SG (2012) Loss of autophagy in pro-opiomelanocortin neurons perturbs axon growth and causes metabolic dysregulation. Cell Metab 15:247–255PubMedPubMedCentralCrossRefGoogle Scholar
  83. Cowley MA, Smith RG, Diano S, Tschöp M, Pronchuk N, Grove KL et al (2003) The distribution and mechanism of action of ghrelin in the CNS demonstrates a novel hypothalamic circuit regulating energy homeostasis. Neuron 37:649–661PubMedCrossRefGoogle Scholar
  84. Crujeiras AB, Goyenechea E, Abete I, Lage M, Carreira MC, Martínez JA, Casanueva FF (2010) Weight regain after a diet-induced loss is predicted by higher baseline leptin and lower ghrelin plasma levels. J Clin Endocrinol Metab 95:5037–5044PubMedCrossRefGoogle Scholar
  85. Crujeiras AB, Díaz-Lagares A, Abete I, Goyenechea E, Amil M, Martínez JA, Casanueva FF (2014) Pre-treatment circulating leptin/ghrelin ratio as a non-invasive marker to identify patients likely to regain the lost weight after an energy restriction treatment. J Endocrinol Investig 37:119–126CrossRefGoogle Scholar
  86. Crujeiras AB, Carreira MC, Cabia B, Andrade S, Amil M, Casanueva FF (2015) Leptin resistance in obesity: an epigenetic landscape. Life Sci 140:57–63PubMedCrossRefGoogle Scholar
  87. Cui H, López M, Rahmouni K (2017) The cellular and molecular bases of leptin and ghrelin resistance in obesity. Nat Rev Endocrinol 13:338–351PubMedCrossRefGoogle Scholar
  88. Cummings DE (2006) Ghrelin and the short- and long-term regulation of appetite and body weight. Physiol Behav 89:71–84PubMedCrossRefGoogle Scholar
  89. Cunningham PS, Ahern SA, Smith LC, da Silva Santos CS, Wager TT, Bechtold DA (2016) Targeting of the circadian clock via CK1δ/ε to improve glucose homeostasis in obesity. Sci Rep 6:29983PubMedPubMedCentralCrossRefGoogle Scholar
  90. Czech MP, Tencerova M, Pedersen DJ, Aouadi M (2013) Insulin signalling mechanisms for triacylglycerol storage. Diabetologia 56:949–964PubMedPubMedCentralCrossRefGoogle Scholar
  91. Dallman MF, Akana SF, Laugero KD, Gomez F, Manalo S, Bell ME, Bhatnagar S (2003) A spoonful of sugar: feedback signals of energy stores and corticosterone regulate responses to chronic stress. Physiol Behav 79:3–12PubMedCrossRefGoogle Scholar
  92. Dardente H, Cermakian N (2007) Molecular circadian rhythms in central and peripheral clocks in mammals. Chronobiol Int 24(2):195–213PubMedCrossRefGoogle Scholar
  93. De Bond J-AP, Smith JT (2014) Kisspeptin and energy balance in reproduction. Reproduction (Cambridge, England) 147:R53–R63CrossRefGoogle Scholar
  94. DeBoer MD, Li Y, Cohn S (2010) Colitis causes delay in puberty in female mice out of proportion to changes in leptin and corticosterone. J Gastroenterol 45:277–284PubMedPubMedCentralCrossRefGoogle Scholar
  95. Della Corte C, Mosca A, Majo F, Lucidi V, Panera N, Giglioni E et al (2015) Nonalcoholic fatty pancreas disease and Nonalcoholic fatty liver disease: more than ectopic fat. Clin Endocrinol 83:656–662CrossRefGoogle Scholar
  96. Desai M, Li T, Ross MG (2011) Hypothalamic neurosphere progenitor cells in low birth-weight rat newborns: neurotrophic effects of leptin and insulin. Brain Res 1378:29–42PubMedPubMedCentralCrossRefGoogle Scholar
  97. Diano S, Liu Z-W, Jeong JK, Dietrich MO, Ruan H-B, Kim E et al (2011) Peroxisome proliferation-associated control of reactive oxygen species sets melanocortin tone and feeding in diet-induced obesity. Nat Med 17:1121–1127PubMedPubMedCentralCrossRefGoogle Scholar
  98. Dibner C, Schibler U, Albrecht U (2010) The mammalian circadian timing system: organization and coordination of central and peripheral clocks. Annu Rev Physiol 72:517–549PubMedCrossRefGoogle Scholar
  99. Dietrich MO, Horvath TL (2012) AgRP neurons: the foes of reproduction in leptin-deficient obese subjects. Proc Natl Acad Sci U S A 109:2699–2700PubMedPubMedCentralCrossRefGoogle Scholar
  100. Dietrich MO, Liu Z-W, Horvath TL (2013) Mitochondrial dynamics controlled by mitofusins regulate Agrp neuronal activity and diet-induced obesity. Cell 155:188–199PubMedPubMedCentralCrossRefGoogle Scholar
  101. Dimicco JA, Zaretsky DV (2007) The dorsomedial hypothalamus: a new player in thermoregulation. Am J Physiol Regul Integr Comp Physiol 292(1):R47–R63PubMedCrossRefGoogle Scholar
  102. Dufau ML (1998) The luteinizing hormone receptor. Annu Rev Physiol 60:461–496PubMedCrossRefGoogle Scholar
  103. Duong M, Cohen JI, Convit A (2012) High cortisol levels are associated with low quality food choice in type 2 diabetes. Endocrine 41:76–81PubMedCrossRefGoogle Scholar
  104. Duque-Guimarães DE, Ozanne SE (2013) Nutritional programming of insulin resistance: causes and consequences. Trends Endocrinol Metab 24:525–535PubMedCrossRefGoogle Scholar
  105. Eckel-Mahan K, Sassone-Corsi P (2013) Metabolism and the circadian clock converge. Physiol Rev 93:107–135PubMedPubMedCentralCrossRefGoogle Scholar
  106. Egecioglu E, Stenström B, Pinnock SB, Tung LYC, Dornonville de la Cour C, Lindqvist A et al (2008) Hypothalamic gene expression following ghrelin therapy to gastrectomized rodents. Regul Pept 146:176–182PubMedCrossRefGoogle Scholar
  107. Elizondo-Vega R, Cortes-Campos C, Barahona MJ, Oyarce KA, Carril CA, García-Robles MA (2015) The role of tanycytes in hypothalamic glucosensing. J Cell Mol Med 19:1471–1482PubMedPubMedCentralCrossRefGoogle Scholar
  108. English PJ, Ghatei MA, Malik IA, Bloom SR, Wilding JPH (2002) Food fails to suppress ghrelin levels in obese humans. J Clin Endocrinol Metab 87:2984PubMedCrossRefGoogle Scholar
  109. Esel E, Ozsoy S, Tutus A, Sofuoglu S, Kartalci S, Bayram F, Kokbudak Z, Kula M (2005) Effects of antidepressant treatment and of gender on serum leptin levels in patients with major depression. Prog Neuro-Psychopharmacol Biol Psychiatry 29:565–570CrossRefGoogle Scholar
  110. Farooqi IS, Jebb SA, Langmack G, Lawrence E, Cheetham CH, Prentice AM, Hughes IA, McCamish MA, O’Rahilly S (1999) Effects of recombinant leptin therapy in a child with congenital leptin deficiency. N Engl J Med 341(12):879–884PubMedCrossRefGoogle Scholar
  111. Farris W, Mansourian S, Chang Y, Lindsley L, Eckman EA, Frosch MP et al (2003) Insulin-degrading enzyme regulates the levels of insulin, amyloid beta-protein, and the beta-amyloid precursor protein intracellular domain in vivo. Proc Natl Acad Sci U S A 100:4162–4167PubMedPubMedCentralCrossRefGoogle Scholar
  112. Farris W, Mansourian S, Leissring MA, Eckman EA, Bertram L, Eckman CB, Tanzi RE, Selkoe DJ (2004) Partial loss-of-function mutations in insulin-degrading enzyme that induce diabetes also impair degradation of amyloid beta-protein. Am J Pathol 164:1425–1434PubMedPubMedCentralCrossRefGoogle Scholar
  113. Fishel MA, Watson GS, Montine TJ, Wang Q, Green PS, Kulstad JJ et al (2005) Hyperinsulinemia provokes synchronous increases in central inflammation and beta-amyloid in normal adults. Arch Neurol 62:1539–1544PubMedCrossRefGoogle Scholar
  114. Frank MG, Watkins LR, Maier SF (2013) Stress-induced glucocorticoids as a neuroendocrine alarm signal of danger. Brain Behav Immun 33:1–6PubMedCrossRefGoogle Scholar
  115. Friedman JM (2002) The function of leptin in nutrition, weight, and physiology. Nutr Rev 60(S1–14–84):85–87Google Scholar
  116. Friedman JM, Halaas JL (1998) Leptin and the regulation of body weight in mammals. Nature 395:763–770PubMedCrossRefGoogle Scholar
  117. Froy O (2010) Metabolism and circadian rhythms—implications for obesity. Endocr Rev 31:1–24PubMedCrossRefGoogle Scholar
  118. Fuller CA, Horwitz BA, Horowitz JM (1975) Shivering and nonshivering thermogenic responses of cold-exposed rats to hypothalamic warming. Am J Phys 228:1519–1524Google Scholar
  119. Gallant AR, Lundgren J, Drapeau V (2012) The night-eating syndrome and obesity. Obes Rev 13:528–536PubMedCrossRefGoogle Scholar
  120. Gamber KM, Huo L, Ha S, Hairston JE, Greeley S, Bjørbæk C (2012) Over-expression of leptin receptors in hypothalamic POMC neurons increases susceptibility to diet-induced obesity (N Irwin, Ed). PLoS One 7:e30485PubMedPubMedCentralCrossRefGoogle Scholar
  121. Ganong WF (2000) Circumventricular organs: definition and role in the regulation of endocrine and autonomic function. Clin Exp Pharmacol Physiol 27:422–427PubMedCrossRefGoogle Scholar
  122. Gao Y, Sun T (2016) Molecular regulation of hypothalamic development and physiological functions. Mol Neurobiol 53:4275–4285PubMedCrossRefGoogle Scholar
  123. Gao J, Ghibaudi L, van Heek M, Hwa JJ (2002) Characterization of diet-induced obese rats that develop persistent obesity after 6 months of high-fat followed by 1 month of low-fat diet. Brain Res 936:87–90PubMedCrossRefGoogle Scholar
  124. Gao Q, Wolfgang MJ, Neschen S, Morino K, Horvath TL, Shulman GI, Fu X-Y (2004) Disruption of neural signal transducer and activator of transcription 3 causes obesity, diabetes, infertility, and thermal dysregulation. Proc Natl Acad Sci 101:4661–4666PubMedPubMedCentralCrossRefGoogle Scholar
  125. García-Cáceres C, Quarta C, Varela L, Gao Y, Gruber T, Legutko B et al (2016) Astrocytic insulin signaling couples brain glucose uptake with nutrient availability. Cell 166:867–880PubMedCrossRefGoogle Scholar
  126. Gavini CK, Jones WC, Novak CM (2016) Ventromedial hypothalamic melanocortin receptor activation: regulation of activity energy expenditure and skeletal muscle thermogenesis. J Physiol 594:5285–5301PubMedPubMedCentralCrossRefGoogle Scholar
  127. Gerber A, Saini C, Curie T, Emmenegger Y, Rando G, Gosselin P et al (2015) The systemic control of circadian gene expression. Diabetes Obes Metab 17(Suppl 1):23–32PubMedCrossRefGoogle Scholar
  128. Gerozissis K (2008) Brain insulin, energy and glucose homeostasis; genes, environment and metabolic pathologies. Eur J Pharmacol 585:38–49PubMedCrossRefGoogle Scholar
  129. Gibbons GF (1990) Assembly and secretion of hepatic very-low-density lipoprotein. Biochem J 268:1–13PubMedPubMedCentralCrossRefGoogle Scholar
  130. Golden PL, Maccagnan TJ, Pardridge WM (1997) Human blood-brain barrier leptin receptor. Binding and endocytosis in isolated human brain microvessels. J Clin Invest 99:14–18PubMedPubMedCentralCrossRefGoogle Scholar
  131. Gonnissen HKJ, Hulshof T, Westerterp-Plantenga MS (2013) Chronobiology, endocrinology, and energy- and food-reward homeostasis. Obes Rev 14:405–416PubMedCrossRefGoogle Scholar
  132. Gorina R, Font-Nieves M, Márquez-Kisinousky L, Santalucia T, Planas AM (2011) Astrocyte TLR4 activation induces a proinflammatory environment through the interplay between MyD88-dependent NFκB signaling, MAPK, and Jak1/Stat1 pathways. Glia 59:242–255PubMedCrossRefGoogle Scholar
  133. Götz M, Huttner WB (2005) The cell biology of neurogenesis. Nat Rev Mol Cell Biol 6:777–788PubMedCrossRefGoogle Scholar
  134. Gouaze A, Brenachot X, Rigault C, Krezymon A, Rauch C, Nedelec E, Lemoine A, Gascuel J, Bauer S, Penicaud L, Benani A (2013) Cerebral cell renewal in adult mice controls the onset of obesity. PLoS One 8(8):e72029PubMedPubMedCentralCrossRefGoogle Scholar
  135. Guilding C, Hughes ATL, Brown TM, Namvar S, Piggins HD (2009) A riot of rhythms: neuronal and glial circadian oscillators in the mediobasal hypothalamus. Mol Brain 2:28PubMedPubMedCentralCrossRefGoogle Scholar
  136. Guilherme A, Virbasius J V, Puri V, Czech MP (2008) Adipocyte dysfunctions linking obesity to insulin resistance and type 2 diabetes. Nat Rev Mol Cell Biol 9:367–377PubMedPubMedCentralCrossRefGoogle Scholar
  137. Gumbs MCR, van den Heuvel JK, la Fleur SE (2016) The effect of obesogenic diets on brain neuropeptide Y. Physiol Behav 162:161–173PubMedCrossRefGoogle Scholar
  138. Gupta S, Knight AG, Gupta S, Keller JN, Bruce-Keller AJ (2012) Saturated long-chain fatty acids activate inflammatory signaling in astrocytes. J Neurochem 120:1060–1071PubMedPubMedCentralGoogle Scholar
  139. Hahn TM, Breininger JF, Baskin DG, Schwartz MW (1998) Coexpression of Agrp and NPY in fasting-activated hypothalamic neurons. Nat Neurosci 1:271–272PubMedCrossRefGoogle Scholar
  140. Halaas JL, Boozer C, Blair-West J, Fidahusein N, Denton DA, Friedman JM (1997) Physiological response to long-term peripheral and central leptin infusion in lean and obese mice. Proc Natl Acad Sci U S A 94:8878–8883PubMedPubMedCentralCrossRefGoogle Scholar
  141. Han S-K, Gottsch ML, Lee KJ, Popa SM, Smith JT, Jakawich SK, Clifton DK, Steiner RA, Herbison AE (2005) Activation of gonadotropin-releasing hormone neurons by kisspeptin as a neuroendocrine switch for the onset of puberty. J Neurosci 25:11349–11356PubMedCrossRefGoogle Scholar
  142. Harlan SM, Morgan DA, Agassandian K, Guo DF, Cassell MD, Sigmund CD, Mark AL, Rahmouni K (2011) Ablation of the leptin receptor in the hypothalamic arcuate nucleus abrogates leptin-induced sympathetic activation. Circ Res 108(7):808–812PubMedPubMedCentralCrossRefGoogle Scholar
  143. Harlan SM, Guo D-F, Morgan DA, Fernandes-Santos C, Rahmouni K (2013) Hypothalamic mTORC1 signaling controls sympathetic nerve activity and arterial pressure and mediates leptin effects. Cell Metab 17:599–606PubMedPubMedCentralCrossRefGoogle Scholar
  144. Harrell CS, Gillespie CF, Neigh GN (2016) Energetic stress: the reciprocal relationship between energy availability and the stress response. Physiol Behav 166:43–55PubMedCrossRefGoogle Scholar
  145. Hastings MH, Maywood ES, O’Neill JS (2008) Cellular circadian pacemaking and the role of cytosolic rhythms. Curr Biol 18:R805–R815PubMedCrossRefGoogle Scholar
  146. Hatori M, Vollmers C, Zarrinpar A, DiTacchio L, Bushong EA, Gill S et al (2012) Time-restricted feeding without reducing caloric intake prevents metabolic diseases in mice fed a high-fat diet. Cell Metab 15:848–860PubMedPubMedCentralCrossRefGoogle Scholar
  147. Hayden MS, Ghosh S (2008) Shared principles in NF-kappaB signaling. Cell 132:344–362PubMedCrossRefGoogle Scholar
  148. Hetherington AW, Ranson SW (1940) Hypothalamic lesions and adiposity in the rat. Anat Rec 78:24CrossRefGoogle Scholar
  149. Hirosumi J, Tuncman G, Chang L, Görgün CZ, Uysal KT, Maeda K, Karin M, Hotamisligil GS (2002) A central role for JNK in obesity and insulin resistance. Nature 420:333–336PubMedCrossRefGoogle Scholar
  150. van den Hoek AM, van Heijningen C, Schröder-van der Elst JP, Ouwens DM, Havekes LM, Romijn JA, Kalsbeek A, Pijl H (2008) Intracerebroventricular administration of neuropeptide Y induces hepatic insulin resistance via sympathetic innervation. Diabetes 57:2304–2310PubMedPubMedCentralCrossRefGoogle Scholar
  151. Hogan S, Coscina DV, Himms-Hagen J (1982) Brown adipose tissue of rats with obesity-inducing ventromedial hypothalamic lesions. Am J Phys 243:E338–E344Google Scholar
  152. Holland WL, Brozinick JT, Wang LP, Hawkins ED, Sargent KM, Liu Y, Narra K, Hoehn KL, Knotts TA, Siesky A, Nelson DH, Karathanasis SK, Fontenot GK, Birnbaum MJ, Summers SA (2007) Inhibition of ceramide synthesis ameliorates glucocorticoid-, saturated-fat-, and obesity-induced insulin resistance. Cell Metab 5(3):167–179PubMedCrossRefGoogle Scholar
  153. Holland WL, Bikman BT, Wang L-P, Yuguang G, Sargent KM, Bulchand S et al (2011) Lipid-induced insulin resistance mediated by the proinflammatory receptor TLR4 requires saturated fatty acid-induced ceramide biosynthesis in mice. J Clin Invest 121:1858–1870PubMedPubMedCentralCrossRefGoogle Scholar
  154. Holt SJ, Wheal H V, York DA (1987) Hypothalamic control of brown adipose tissue in Zucker lean and obese rats. Effect of electrical stimulation of the ventromedial nucleus and other hypothalamic centres. Brain Res 405:227–233PubMedCrossRefGoogle Scholar
  155. Horvath TL (2006) Synaptic plasticity in energy balance regulation. Obesity 14:228S–233SPubMedCrossRefGoogle Scholar
  156. Horvath TL, Sarman B, García-Cáceres C, Enriori PJ, Sotonyi P, Shanabrough M et al (2010) Synaptic input organization of the melanocortin system predicts diet-induced hypothalamic reactive gliosis and obesity. Proc Natl Acad Sci U S A 107:14875–14880PubMedPubMedCentralCrossRefGoogle Scholar
  157. Hosoi T, Sasaki M, Miyahara T, Hashimoto C, Matsuo S, Yoshii M, Ozawa K (2008) Endoplasmic reticulum stress induces leptin resistance. Mol Pharmacol 74:1610–1619PubMedCrossRefGoogle Scholar
  158. Hotamisligil GS (2006) Inflammation and metabolic disorders. Nature 444:860–867PubMedCrossRefGoogle Scholar
  159. Hotamisligil GS, Shargill NS, Spiegelman BM (1993) Adipose expression of tumor necrosis factoralpha: direct role in obesity-linked insulin resistance. Science 259(5091):87–91PubMedCrossRefGoogle Scholar
  160. Hur SSJ, Cropley JE, Suter CM (2017) Paternal epigenetic programming: evolving metabolic disease risk. J Mol Endocrinol 58:R159–R168PubMedCrossRefGoogle Scholar
  161. I’Anson H, Manning JM, Herbosa CG, Pelt J, Friedman CR, Wood RI, Bucholtz DC, Foster DL (2000) Central inhibition of gonadotropin-releasing hormone secretion in the growth-restricted hypogonadotropic female sheep. Endocrinology 141:520–527PubMedCrossRefGoogle Scholar
  162. Imai-Matsumura K, Matsumura K, Nakayama T (1984) Involvement of ventromedial hypothalamus in brown adipose tissue thermogenesis induced by preoptic cooling in rats. Jpn J Physiol 34:939–943PubMedCrossRefGoogle Scholar
  163. Ito Y, Banno R, Hagimoto S, Ozawa Y, Arima H, Oiso Y (2012) TNFα increases hypothalamic PTP1B activity via the NFκB pathway in rat hypothalamic organotypic cultures. Regul Pept 174:58–64PubMedCrossRefGoogle Scholar
  164. Jais A, Brüning JC (2017) Hypothalamic inflammation in obesity and metabolic disease. J Clin Invest 127:24–32PubMedCrossRefGoogle Scholar
  165. Joly-Amado A, Denis RGP, Castel J, Lacombe A, Cansell C, Rouch C et al (2012) Hypothalamic AgRP-neurons control peripheral substrate utilization and nutrient partitioning. EMBO J 31:4276–4288PubMedPubMedCentralCrossRefGoogle Scholar
  166. Jones BA, Beamer M, Ahmed S (2010) Fractalkine/CX3CL1: a potential new target for inflammatory diseases. Mol Interv 10:263–270PubMedPubMedCentralCrossRefGoogle Scholar
  167. Juruena MF (2014) Early-life stress and HPA axis trigger recurrent adulthood depression. Epilepsy Behav 38:148–159PubMedCrossRefGoogle Scholar
  168. Kahn BB, Flier JS (2000) Obesity and insulin resistance. J Clin Invest 106(4):473–481PubMedPubMedCentralCrossRefGoogle Scholar
  169. Kaiyala KJ, Prigeon RL, Kahn SE, Woods SC, Schwartz MW (2000) Obesity induced by a high-fat diet is associated with reduced brain insulin transport in dogs. Diabetes 49:1525–1533PubMedCrossRefGoogle Scholar
  170. Kalra SP, Fuentes M, Fournier A, Parker SL, Crowley WR (1992) Involvement of the Y-1 receptor subtype in the regulation of luteinizing hormone secretion by neuropeptide Y in rats. Endocrinology 130:3323–3330PubMedCrossRefGoogle Scholar
  171. Kamegai J, Tamura H, Shimizu T, Ishii S, Sugihara H, Wakabayashi I (2000) Central effect of ghrelin, an endogenous growth hormone secretagogue, on hypothalamic peptide gene expression. Endocrinology 141:4797–4800PubMedCrossRefGoogle Scholar
  172. Kaushik S, Rodriguez-Navarro JA, Arias E, Kiffin R, Sahu S, Schwartz GJ, Cuervo AM, Singh R (2011) Autophagy in hypothalamic AgRP neurons regulates food intake and energy balance. Cell Metab 14:173–183PubMedPubMedCentralCrossRefGoogle Scholar
  173. Kaushik S, Arias E, Kwon H, Lopez NM, Athonvarangkul D, Sahu S, Schwartz GJ, Pessin JE, Singh R (2012) Loss of autophagy in hypothalamic POMC neurons impairs lipolysis. EMBO Rep 13:258–265PubMedPubMedCentralCrossRefGoogle Scholar
  174. Kleinridders A, Schenten D, Konner AC, Belgardt BF, Mauer J, Okamura T, Wunderlich FT, Medzhitov R, Bruning JC (2009) MyD88 signaling in the CNS is required for development of fatty acid-induced leptin resistance and diet-induced obesity. Cell Metab 10(4):249–259PubMedPubMedCentralCrossRefGoogle Scholar
  175. Klöckener T, Hess S, Belgardt BF, Paeger L, Verhagen LAW, Husch A et al (2011) High-fat feeding promotes obesity via insulin receptor/PI3K-dependent inhibition of SF-1 VMH neurons. Nat Neurosci 14:911–918PubMedPubMedCentralCrossRefGoogle Scholar
  176. Koch L, Wunderlich FT, Seibler J, Könner AC, Hampel B, Irlenbusch S et al (2008) Central insulin action regulates peripheral glucose and fat metabolism in mice. J Clin Invest 118:2132–2147PubMedPubMedCentralGoogle Scholar
  177. Kohsaka A, Laposky AD, Ramsey KM, Estrada C, Joshu C, Kobayashi Y, Turek FW, Bass J (2007) High-fat diet disrupts behavioral and molecular circadian rhythms in mice. Cell Metab 6:414–421PubMedCrossRefGoogle Scholar
  178. Kojima M, Hosoda H, Date Y, Nakazato M, Matsuo H, Kangawa K (1999) Ghrelin is a growth-hormone-releasing acylated peptide from stomach. Nature 402:656–660PubMedCrossRefGoogle Scholar
  179. Kokoeva MV, Yin H, Flier JS (2005) Neurogenesis in the hypothalamus of adult mice: potential role in energy balance. Science (New York, NY) 310:679–683CrossRefGoogle Scholar
  180. Kolb H, Mandrup-Poulsen T (2010) The global diabetes epidemic as a consequence of lifestyle-induced low-grade inflammation. Diabetologia 53:10–20PubMedCrossRefGoogle Scholar
  181. Könner AC, Brüning JC (2012) Selective insulin and leptin resistance in metabolic disorders. Cell Metab 16:144–152PubMedCrossRefGoogle Scholar
  182. Konner AC, Janoschek R, Plum L, Jordan SD, Rother E, Ma X, Xu C, Enriori P, Hampel B, Barsh GS, Kahn CR, Cowley MA, Ashcroft FM, Bruning JC (2007) Insulin action in AgRP-expressing neurons is required for suppression of hepatic glucose production. Cell Metab 5(6):438–449PubMedCrossRefGoogle Scholar
  183. Korner J, Chua SC, Williams JA, Leibel RL, Wardlaw SL (1999) Regulation of hypothalamic proopiomelanocortin by leptin in lean and obese rats. Neuroendocrinology 70:377–383PubMedCrossRefGoogle Scholar
  184. Kuroda H, Tahara Y, Saito K, Ohnishi N, Kubo Y, Seo Y et al (2012) Meal frequency patterns determine the phase of mouse peripheral circadian clocks. Sci Rep 2:711PubMedPubMedCentralCrossRefGoogle Scholar
  185. Kyrou I, Tsigos C (2009) Stress hormones: physiological stress and regulation of metabolism. Curr Opin Pharmacol 9:787–793PubMedCrossRefGoogle Scholar
  186. Lambertsen KL, Clausen BH, Babcock AA, Gregersen R, Fenger C, Nielsen HH et al (2009) Microglia protect neurons against ischemia by synthesis of tumor necrosis factor. J Neurosci 29:1319–1330PubMedCrossRefGoogle Scholar
  187. Lamers F, Vogelzangs N, Merikangas KR, de Jonge P, Beekman ATF, Penninx BWJH (2013) Evidence for a differential role of HPA-axis function, inflammation and metabolic syndrome in melancholic versus atypical depression. Mol Psychiatry 18:692–699PubMedCrossRefGoogle Scholar
  188. Langlet F (2014) Tanycytes: a gateway to the metabolic hypothalamus. J Neuroendocrinol 26:753–760PubMedCrossRefGoogle Scholar
  189. Langlet F, Levin BE, Luquet S, Mazzone M, Messina A, Dunn-Meynell AA et al (2013) Tanycytic VEGF-A boosts blood-hypothalamus barrier plasticity and access of metabolic signals to the arcuate nucleus in response to fasting. Cell Metab 17:607–617PubMedPubMedCentralCrossRefGoogle Scholar
  190. Lee JY, Sohn KH, Rhee SH, Hwang D (2001) Saturated fatty acids, but not unsaturated fatty acids, induce the expression of cyclooxygenase-2 mediated through toll-like receptor 4. J Biol Chem 276:16683–16689PubMedCrossRefGoogle Scholar
  191. Lee J-W, Swick AG, Romsos DR (2003) Leptin constrains phospholipase C-protein kinase C-induced insulin secretion via a phosphatidylinositol 3-kinase-dependent pathway. Exp Biol Med (Maywood) 228:175–182CrossRefGoogle Scholar
  192. Lee S, Chen TT, Barber CL, Jordan MC, Murdock J, Desai S et al (2007) Autocrine VEGF signaling is required for vascular homeostasis. Cell 130:691–703PubMedPubMedCentralCrossRefGoogle Scholar
  193. Lee DA, Bedont JL, Pak T, Wang H, Song J, Miranda-Angulo A, Takiar V, Charubhumi V, Balordi F, Takebayashi H, Aja S, Ford E, Fishell G, Blackshaw S (2012) Tanycytes of the hypothalamic median eminence form a diet-responsive neurogenic niche. Nat Neurosci 15(5):700–702PubMedPubMedCentralCrossRefGoogle Scholar
  194. Lee KY, Russell SJ, Ussar S, Boucher J, Vernochet C, Mori MA, Smyth G, Rourk M, Cederquist C, Rosen ED, Kahn BB, Kahn CR (2013) Lessons on conditional gene targeting in mouse adipose tissue. Diabetes 62(3):864–874PubMedPubMedCentralCrossRefGoogle Scholar
  195. Lehr S, Hartwig S, Sell H (2012) Adipokines: a treasure trove for the discovery of biomarkers for metabolic disorders. Proteomics Clin Appl 6:91–101PubMedCrossRefGoogle Scholar
  196. Leloup C, Magnan C, Benani A, Bonnet E, Alquier T, Offer G et al (2006) Mitochondrial reactive oxygen species are required for hypothalamic glucose sensing. Diabetes 55:2084–2090PubMedCrossRefGoogle Scholar
  197. Levin BE, Dunn-Meynell AA (1997) Dysregulation of arcuate nucleus preproneuropeptide Y mRNA in diet-induced obese rats. Am J Phys 272:R1365–R1370Google Scholar
  198. Liang L, Chen J, Zhan L, Lu X, Sun X, Sui H, Zheng L, Xiang H, Zhang F (2015) Endoplasmic reticulum stress impairs insulin receptor signaling in the brains of obese rats (C Scavone, Ed). PLoS One 10:e0126384PubMedPubMedCentralCrossRefGoogle Scholar
  199. Lin S, Storlien LH, Huang XF (2000) Leptin receptor, NPY, POMC mRNA expression in the diet-induced obese mouse brain. Brain Res 875:89–95PubMedCrossRefGoogle Scholar
  200. Liu Y, Munro D, Layfield D, Dellinger A, Walter J, Peterson K, Rickman CB, Allingham RR, Hauser MA (2011) Serial analysis of gene expression (SAGE) in normal human trabecular meshwork. Mol Vis 17:885–893PubMedPubMedCentralGoogle Scholar
  201. Lledo P-M, Alonso M, Grubb MS (2006) Adult neurogenesis and functional plasticity in neuronal circuits. Nat Rev Neurosci 7:179–193PubMedCrossRefGoogle Scholar
  202. López M, Varela L, Vázquez MJ, Rodríguez-Cuenca S, González CR, Velagapudi VR et al (2010) Hypothalamic AMPK and fatty acid metabolism mediate thyroid regulation of energy balance. Nat Med 16:1001–1008PubMedPubMedCentralCrossRefGoogle Scholar
  203. López M, Nogueiras R, Tena-Sempere M, Diéguez C (2016) Hypothalamic AMPK: a canonical regulator of whole-body energy balance. Nat Rev Endocrinol 12:421–432PubMedCrossRefGoogle Scholar
  204. Machluf Y, Gutnick A, Levkowitz G (2011) Development of the zebrafish hypothalamus. Ann N Y Acad Sci 1220:93–105PubMedCrossRefGoogle Scholar
  205. Maes HH, Neale MC, Eaves LJ (1997) Genetic and environmental factors in relative body weight and human adiposity. Behav Genet 27(4):325–351PubMedCrossRefGoogle Scholar
  206. Marazziti D, Rutigliano G, Baroni S, Landi P, Dell’Osso L (2014) Metabolic syndrome and major depression. CNS Spectr 19:293–304PubMedCrossRefGoogle Scholar
  207. Marchi M, Lisi S, Curcio M, Barbuti S, Piaggi P, Ceccarini G et al (2011) Human leptin tissue distribution, but not weight loss-dependent change in expression, is associated with methylation of its promoter. Epigenetics 6:1198–1206PubMedPubMedCentralCrossRefGoogle Scholar
  208. Marco A, Kisliouk T, Weller A, Meiri N (2013) High fat diet induces hypermethylation of the hypothalamic Pomc promoter and obesity in post-weaning rats. Psychoneuroendocrinology 38:2844–2853PubMedCrossRefGoogle Scholar
  209. Marino JS, Xu Y, Hill JW (2011) Central insulin and leptin-mediated autonomic control of glucose homeostasis. Trends Endocrinol Metab 22:275–285PubMedPubMedCentralGoogle Scholar
  210. Mark AL (2013) Selective leptin resistance revisited. Am J Phys Regul Integr Comp Phys 305:R566–R581Google Scholar
  211. van Marken Lichtenbelt WD, Vanhommerig JW, Smulders NM, Drossaerts JM, Kemerink GJ, Bouvy ND, Schrauwen P, Teule GJ (2009) Cold-activated brown adipose tissue in healthy men. N Engl J Med 360(15):1500–1508PubMedCrossRefGoogle Scholar
  212. Matsuzawa-Nagata N, Takamura T, Ando H, Nakamura S, Kurita S, Misu H et al (2008) Increased oxidative stress precedes the onset of high-fat diet-induced insulin resistance and obesity. Metabolism 57:1071–1077PubMedCrossRefGoogle Scholar
  213. McNay DEG, Briançon N, Kokoeva MV, Maratos-Flier E, Flier JS (2012) Remodeling of the arcuate nucleus energy-balance circuit is inhibited in obese mice. J Clin Invest 122:142–152PubMedCrossRefGoogle Scholar
  214. Meier-Ewert HK, Ridker PM, Rifai N, Regan MM, Price NJ, Dinges DF, Mullington JM (2004) Effect of sleep loss on C-reactive protein, an inflammatory marker of cardiovascular risk. J Am Coll Cardiol 43:678–683PubMedCrossRefGoogle Scholar
  215. Meng Q, Cai D (2011) Defective hypothalamic autophagy directs the central pathogenesis of obesity via the IkappaB kinase beta (IKKbeta)/NF-kappaB pathway. J Biol Chem 286:32324–32332PubMedPubMedCentralCrossRefGoogle Scholar
  216. Mercer SW, Trayhurn P (1987) Effect of high fat diets on energy balance and thermogenesis in brown adipose tissue of lean and genetically obese ob/ob mice. J Nutr 117:2147–2153PubMedGoogle Scholar
  217. Mercer AJ, Stuart RC, Attard CA, Otero-Corchon V, Nillni EA, Low MJ (2014) Temporal changes in nutritional state affect hypothalamic POMC peptide levels independently of leptin in adult male mice. Am J Phys 306:E904–E915Google Scholar
  218. Michael MD, Kulkarni RN, Postic C, Previs SF, Shulman GI, Magnuson MA, Kahn CR (2000) Loss of insulin signaling in hepatocytes leads to severe insulin resistance and progressive hepatic dysfunction. Mol Cell 6:87–97PubMedCrossRefGoogle Scholar
  219. Michopoulos V, Toufexis D, Wilson ME (2012) Social stress interacts with diet history to promote emotional feeding in females. Psychoneuroendocrinology 37:1479–1490PubMedPubMedCentralCrossRefGoogle Scholar
  220. Mifune H, Tajiri Y, Nishi Y, Hara K, Iwata S, Tokubuchi I, Mitsuzono R, Yamada K, Kojima M (2015) Voluntary exercise contributed to an amelioration of abnormal feeding behavior, locomotor activity and ghrelin production concomitantly with a weight reduction in high fat diet-induced obese rats. Peptides 71:49–55PubMedCrossRefGoogle Scholar
  221. Milanski M, Degasperi G, Coope A, Morari J, Denis R, Cintra DE, Tsukumo DM, Anhe G, Amaral ME, Takahashi HK, Curi R, Oliveira HC, Carvalheira JB, Bordin S, Saad MJ, Velloso LA (2009) Saturated fatty acids produce an inflammatory response predominantly through the activation of TLR4 signaling in hypothalamus: implications for the pathogenesis of obesity. J Neurosci 29(2):359–370PubMedCrossRefGoogle Scholar
  222. Milanski M, Arruda AP, Coope A, Ignacio-Souza LM, Nunez CE, Roman EA et al (2012) Inhibition of hypothalamic inflammation reverses diet-induced insulin resistance in the liver. Diabetes 61:1455–1462PubMedPubMedCentralCrossRefGoogle Scholar
  223. Minokoshi Y (2017) Hypothalamic control of glucose and lipid metabolism in skeletal muscle. J Phys Fitness Sports Med 6(2):75–87CrossRefGoogle Scholar
  224. Minokoshi Y, Saito M, Shimazu T (1988) Sympathetic activation of lipid synthesis in brown adipose tissue in the rat. J Physiol 398:361–370PubMedPubMedCentralCrossRefGoogle Scholar
  225. Minokoshi Y, Kim Y-B, Peroni OD, Fryer LGD, Müller C, Carling D, Kahn BB (2002) Leptin stimulates fatty-acid oxidation by activating AMP-activated protein kinase. Nature 415:339–343PubMedCrossRefGoogle Scholar
  226. Moore RY, Eichler VB (1972) Loss of a circadian adrenal corticosterone rhythm following suprachiasmatic lesions in the rat. Brain Res 42:201–206PubMedCrossRefGoogle Scholar
  227. Moraes JC, Coope A, Morari J, Cintra DE, Roman EA, Pauli JR et al (2009) High-fat diet induces apoptosis of hypothalamic neurons (X-Y Lu, Ed). PLoS One 4:e5045PubMedPubMedCentralCrossRefGoogle Scholar
  228. Morris AA, Ahmed Y, Stoyanova N, Hooper WC, De Staerke C, Gibbons G, Quyyumi A, Vaccarino V (2012) The association between depression and leptin is mediated by adiposity. Psychosom Med 74:483–488PubMedPubMedCentralCrossRefGoogle Scholar
  229. Morrison SF, Madden CJ, Tupone D (2014) Central neural regulation of brown adipose tissue thermogenesis and energy expenditure. Cell Metab 19:741–756PubMedPubMedCentralCrossRefGoogle Scholar
  230. Münzberg H, Flier JS, Bjørbaek C (2004) Region-specific leptin resistance within the hypothalamus of diet-induced obese mice. Endocrinology 145:4880–4889PubMedCrossRefGoogle Scholar
  231. Muoio DM, Newgard CB (2008) Mechanisms of disease: molecular and metabolic mechanisms of insulin resistance and beta-cell failure in type 2 diabetes. Nat Rev Mol Cell Biol 9:193–205PubMedCrossRefGoogle Scholar
  232. Muroi Y, Ishii T (2016) A novel neuropeptide Y neuronal pathway linking energy state and reproductive behavior. Neuropeptides 59:1–8PubMedCrossRefGoogle Scholar
  233. Myers MG, Münzberg H, Leinninger GM, Leshan RL (2009) The geometry of leptin action in the brain: more complicated than a simple ARC. Cell Metab 9:117–123PubMedPubMedCentralCrossRefGoogle Scholar
  234. Myers MG, Leibel RL, Seeley RJ, Schwartz MW (2010) Obesity and leptin resistance: distinguishing cause from effect. Trends Endocrinol Metab 21:643–651PubMedPubMedCentralCrossRefGoogle Scholar
  235. Nagai K, Nagai N, Sugahara K, Niijima A, Nakagawa H (1994) Circadian rhythms and energy metabolism with special reference to the suprachiasmatic nucleus. Neurosci Biobehav Rev 18:579–584PubMedCrossRefGoogle Scholar
  236. Nakanishi M, Niidome T, Matsuda S, Akaike A, Kihara T, Sugimoto H (2007) Microglia-derived interleukin-6 and leukaemia inhibitory factor promote astrocytic differentiation of neural stem/progenitor cells. Eur J Neurosci 25:649–658PubMedCrossRefGoogle Scholar
  237. Nakazato M, Murakami N, Date Y, Kojima M, Matsuo H, Kangawa K, Matsukura S (2001) A role for ghrelin in the central regulation of feeding. Nature 409:194–198PubMedCrossRefGoogle Scholar
  238. Nguyen P, Leray V, Diez M, Serisier S, J Le B’h, Siliart B, Dumon H (2008) Liver lipid metabolism. J Anim Physiol Anim Nutr 92:272–283CrossRefGoogle Scholar
  239. Nicholas LM, Morrison JL, Rattanatray L, Zhang S, Ozanne SE, McMillen IC (2016) The early origins of obesity and insulin resistance: timing, programming and mechanisms. Int J Obes 40:229–238Google Scholar
  240. Nitta T, Hata M, Gotoh S, Seo Y, Sasaki H, Hashimoto N, Furuse M, Tsukita S (2003) Size-selective loosening of the blood-brain barrier in claudin-5-deficient mice. J Cell Biol 161:653–660PubMedPubMedCentralCrossRefGoogle Scholar
  241. Nogueiras R, Wiedmer P, Perez-Tilve D, Veyrat-Durebex C, Keogh JM, Sutton GM et al (2007) The central melanocortin system directly controls peripheral lipid metabolism. J Clin Invest 117:3475–3488PubMedPubMedCentralCrossRefGoogle Scholar
  242. Nogueiras R, López M, Diéguez C (2010) Regulation of lipid metabolism by energy availability: a role for the central nervous system. Obes Rev 11:185–201PubMedCrossRefGoogle Scholar
  243. de Noronha SR, Campos GV, Abreu AR, de Souza AA, Chianca DA, de Menezes RC (2017) High fat diet induced-obesity facilitates anxiety-like behaviors due to GABAergic impairment within the dorsomedial hypothalamus in rats. Behav Brain Res 316:38–46PubMedCrossRefGoogle Scholar
  244. O’Neill JS, Reddy AB (2012) The essential role of cAMP/Ca2+ signalling in mammalian circadian timekeeping. Biochem Soc Trans 40:44–50PubMedPubMedCentralCrossRefGoogle Scholar
  245. Obici S, Feng Z, Karkanias G, Baskin DG, Rossetti L (2002) Decreasing hypothalamic insulin receptors causes hyperphagia and insulin resistance in rats. Nat Neurosci 5:566–572PubMedCrossRefGoogle Scholar
  246. Odegaard JI, Chawla A (2013) Pleiotropic actions of insulin resistance and inflammation in metabolic homeostasis. Science (New York, NY) 339:172–177CrossRefGoogle Scholar
  247. Ogunnowo-Bada EO, Heeley N, Brochard L, Evans ML (2014) Brain glucose sensing, glucokinase and neural control of metabolism and islet function. Diabetes Obes Metab 16(Suppl 1):26–32PubMedPubMedCentralCrossRefGoogle Scholar
  248. Oliveira PF, Sousa M, Silva BM, Monteiro MP, Alves MG (2017) Obesity, energy balance and spermatogenesis. Reproduction 153:R173–R185PubMedCrossRefGoogle Scholar
  249. Olofsson LE, Unger EK, Cheung CC, AW X (2013) Modulation of AgRP-neuronal function by SOCS3 as an initiating event in diet-induced hypothalamic leptin resistance. Proc Natl Acad Sci U S A 110:E697–E706PubMedPubMedCentralCrossRefGoogle Scholar
  250. Opperhuizen A-L, Wang D, Foppen E, Jansen R, Boudzovitch-Surovtseva O, de Vries J, Fliers E, Kalsbeek A (2016) Feeding during the resting phase causes profound changes in physiology and desynchronization between liver and muscle rhythms of rats (R Silver, Ed). Eur J Neurosci 44:2795–2806PubMedCrossRefGoogle Scholar
  251. Ottaway N, Mahbod P, Rivero B, Norman LA, Gertler A, D’Alessio DA, Perez-Tilve D (2015) Diet-induced obese mice retain endogenous leptin action. Cell Metab 21:877–882PubMedPubMedCentralCrossRefGoogle Scholar
  252. Ouchi N, Kihara S, Arita Y, Nishida M, Matsuyama A, Okamoto Y, Ishigami M, Kuriyama H, Kishida K, Nishizawa H, Hotta K, Muraguchi M, Ohmoto Y, Yamashita S, Funahashi T, Matsuzawa Y (2001) Adipocytederived plasma protein, adiponectin, suppresses lipid accumulation and class A scavenger receptor expression in human monocyte-derived macrophages. Circulation 103(8):1057–1063PubMedCrossRefGoogle Scholar
  253. Ozcan U, Cao Q, Yilmaz E, Lee A-H, Iwakoshi NN, Ozdelen E et al (2004) Endoplasmic reticulum stress links obesity, insulin action, and type 2 diabetes. Science (New York, NY) 306:457–461CrossRefGoogle Scholar
  254. Ozcan L, Ergin AS, Lu A, Chung J, Sarkar S, Nie D, Myers MG Jr, Ozcan U (2009) Endoplasmic reticulum stress plays a central role in development of leptin resistance. Cell Metab 9(1):35–51PubMedCrossRefGoogle Scholar
  255. Paranjape SA, Chan O, Zhu W, Horblitt AM, McNay EC, Cresswell JA, Bogan JS, McCrimmon RJ, Sherwin RS (2010) Influence of insulin in the ventromedial hypothalamus on pancreatic glucagon secretion in vivo. Diabetes 59:1521–1527PubMedPubMedCentralCrossRefGoogle Scholar
  256. Paranjape SA, Chan O, Zhu W, Horblitt AM, Grillo CA, Wilson S, Reagan L, Sherwin RS (2011) Chronic reduction of insulin receptors in the ventromedial hypothalamus produces glucose intolerance and islet dysfunction in the absence of weight gain. Am J Phys Endocrinol Metab 301:E978–E983CrossRefGoogle Scholar
  257. Parton LE, Ye CP, Coppari R, Enriori PJ, Choi B, Zhang C-Y et al (2007) Glucose sensing by POMC neurons regulates glucose homeostasis and is impaired in obesity. Nature 449:228–232PubMedCrossRefGoogle Scholar
  258. Pearson CA, Placzek M (2013) Development of the medial hypothalamus: forming a functional hypothalamic-neurohypophyseal interface. Curr Top Dev Biol 106:49–88PubMedCrossRefGoogle Scholar
  259. Pecoraro N, Reyes F, Gomez F, Bhargava A, Dallman MF (2004) Chronic stress promotes palatable feeding, which reduces signs of stress: feedforward and feedback effects of chronic stress. Endocrinology 145:3754–3762PubMedCrossRefGoogle Scholar
  260. Pendergast JS, Branecky KL, Yang W, Ellacott KLJ, Niswender KD, Yamazaki S (2013) High-fat diet acutely affects circadian organisation and eating behavior. Eur J Neurosci 37:1350–1356PubMedPubMedCentralCrossRefGoogle Scholar
  261. Peplonska B, Bukowska A, Sobala W (2015) Association of rotating night shift work with BMI and abdominal obesity among nurses and midwives (CR Sirtori, Ed). PLoS One 10:e0133761PubMedPubMedCentralCrossRefGoogle Scholar
  262. Perez-Leighton CE, Billington CJ, Kotz CM (2014) Orexin modulation of adipose tissue. Biochim Biophys Acta 1842:440–445PubMedCrossRefGoogle Scholar
  263. Perreault M, Istrate N, Wang L, Nichols AJ, Tozzo E, Stricker-Krongrad A (2004) Resistance to the orexigenic effect of ghrelin in dietary-induced obesity in mice: reversal upon weight loss. Int J Obes Relat Metab Disord 28:879–885PubMedCrossRefGoogle Scholar
  264. Pierce AA, Xu AW (2010) De novo neurogenesis in adult hypothalamus as a compensatory mechanism to regulate energy balance. J Neurosci 30(2):723–730PubMedPubMedCentralCrossRefGoogle Scholar
  265. Posey KA, Clegg DJ, Printz RL, Byun J, Morton GJ, Vivekanandan-Giri A et al (2009) Hypothalamic proinflammatory lipid accumulation, inflammation, and insulin resistance in rats fed a high-fat diet. Am J Phys Endocrinol Metab 296:E1003–E1012CrossRefGoogle Scholar
  266. Prevot V, Bellefontaine N, Baroncini M, Sharif A, Hanchate NK, Parkash J, Campagne C, de Seranno S (2010) Gonadotrophin-releasing hormone nerve terminals, tanycytes and neurohaemal junction remodelling in the adult median eminence: functional consequences for reproduction and dynamic role of vascular endothelial cells. J Neuroendocrinol 22:639–649PubMedPubMedCentralGoogle Scholar
  267. Puig J, Blasco G, Daunis-I-Estadella J, Molina X, Xifra G, Ricart W, Pedraza S, Fernández-Aranda F, Fernández-Real JM (2015) Hypothalamic damage is associated with inflammatory markers and worse cognitive performance in obese subjects. J Clin Endocrinol Metab 100:E276–E281PubMedCrossRefGoogle Scholar
  268. Purkayastha S, Zhang H, Zhang G, Ahmed Z, Wang Y, Cai D (2011) Neural dysregulation of peripheral insulin action and blood pressure by brain endoplasmic reticulum stress. Proc Natl Acad Sci U S A 108:2939–2944PubMedPubMedCentralCrossRefGoogle Scholar
  269. Rahmouni K, Morgan DA, Morgan GM, Mark AL, Haynes WG (2005) Role of selective leptin resistance in diet-induced obesity hypertension. Diabetes 54:2012–2018PubMedCrossRefGoogle Scholar
  270. Ramnanan CJ, Edgerton DS, Kraft G, Cherrington AD (2011) Physiologic action of glucagon on liver glucose metabolism. Diabetes Obes Metab 13(Suppl 1):118–125PubMedPubMedCentralCrossRefGoogle Scholar
  271. Raposinho PD, White RB, Aubert ML (2003) The melanocortin agonist Melanotan-II reduces the orexigenic and adipogenic effects of neuropeptide Y (NPY) but does not affect the NPY-driven suppressive effects on the gonadotropic and somatotropic axes in the male rat. J Neuroendocrinol 15:173–181PubMedCrossRefGoogle Scholar
  272. Reppert SM, Weaver DR (2002) Coordination of circadian timing in mammals. Nature 418(6901):935–941PubMedCrossRefGoogle Scholar
  273. Richter C, Woods IG, Schier AF (2014) Neuropeptidergic control of sleep and wakefulness. Annu Rev Neurosci 37:503–531PubMedCrossRefGoogle Scholar
  274. Rodriguez-Diaz R, Caicedo A (2014) Neural control of the endocrine pancreas. Best Pract Res Clin Endocrinol Metab 28:745–756PubMedCrossRefGoogle Scholar
  275. Roman EAFR, Reis D, Romanatto T, Maimoni D, Ferreira EA, Santos GA, Torsoni AS, Velloso LA, Torsoni MA (2010) Central leptin action improves skeletal muscle AKT, AMPK, and PGC1 alpha activation by hypothalamic PI3K-dependent mechanism. Mol Cell Endocrinol 314:62–69PubMedCrossRefGoogle Scholar
  276. Romanatto T, Cesquini M, Amaral ME, Roman EA, Moraes JC, Torsoni MA, Cruz-Neto AP, Velloso LA (2007) TNF-alpha acts in the hypothalamus inhibiting food intake and increasing the respiratory quotient-effects on leptin and insulin signaling pathways. Peptides 28(5):1050–1058PubMedCrossRefGoogle Scholar
  277. Romanatto T, Roman EA, Arruda AP, Denis RG, Solon C, Milanski M, Moraes JC, Bonfleur ML, Degasperi GR, Picardi PK, Hirabara S, Boschero AC, Curi R, Velloso LA (2009) Deletion of tumor necrosis factor-alpha receptor 1 (TNFR1) protects against diet-induced obesity by means of increased thermogenesis. J Biol Chem 284(52):36213–36222PubMedPubMedCentralCrossRefGoogle Scholar
  278. Ropelle ER, Flores MB, Cintra DE, Rocha GZ, Pauli JR, Morari J et al (2010) IL-6 and IL-10 anti-inflammatory activity links exercise to hypothalamic insulin and leptin sensitivity through IKKbeta and ER stress inhibition (AJ Vidal-Puig, Ed). PLoS Biol 8:e1000465PubMedPubMedCentralCrossRefGoogle Scholar
  279. Rosenwasser AM, Turek FW (2015) Neurobiology of circadian rhythm regulation. Sleep Med Clin 10:403–412PubMedCrossRefGoogle Scholar
  280. Rothwell NJ, Stock MJ (1981) A role for insulin in the diet-induced thermogenesis of cafeteria-fed rats. Metab Clin Exp 30:673–678PubMedCrossRefGoogle Scholar
  281. Rothwell NJ, Stock MJ (1997) A role for brown adipose tissue in diet-induced thermogenesis. Obes Res 5(6):650PubMedCrossRefGoogle Scholar
  282. Rudic RD, McNamara P, Curtis A-M, Boston RC, Panda S, Hogenesch JB, Fitzgerald GA (2004) BMAL1 and CLOCK, two essential components of the circadian clock, are involved in glucose homeostasis (Steve O’Rahilly, Ed). PLoS Biol 2:e377PubMedPubMedCentralCrossRefGoogle Scholar
  283. Rudolph LM, Bentley GE, Calandra RS, Paredes AH, Tesone M, TJ W, Micevych PE (2016) Peripheral and central mechanisms involved in the hormonal control of male and female reproduction. J Neuroendocrinol 28. doi: 10.1111/jne.12405
  284. Ruffin M, Nicolaidis S (1999) Electrical stimulation of the ventromedial hypothalamus enhances both fat utilization and metabolic rate that precede and parallel the inhibition of feeding behavior. Brain Res 846:23–29PubMedCrossRefGoogle Scholar
  285. Ryan KK, Mul JD, Clemmensen C, Egan AE, Begg DP, Halcomb K, Seeley RJ, Herman JP, Ulrich-Lai YM (2014) Loss of melanocortin-4 receptor function attenuates HPA responses to psychological stress. Psychoneuroendocrinology 42:98–105PubMedPubMedCentralCrossRefGoogle Scholar
  286. Sahar S, Sassone-Corsi P (2012) Regulation of metabolism: the circadian clock dictates the time. Trends Endocrinol Metab 23:1–8PubMedCrossRefGoogle Scholar
  287. Saltiel AR, Olefsky JM (2017) Inflammatory mechanisms linking obesity and metabolic disease. J Clin Invest 127:1–4PubMedCrossRefGoogle Scholar
  288. van de Sande-Lee S, FRS P, Cintra DE, Fernandes PT, Cardoso AR, Garlipp CR et al (2011) Partial reversibility of hypothalamic dysfunction and changes in brain activity after body mass reduction in obese subjects. Diabetes 60:1699–1704PubMedPubMedCentralCrossRefGoogle Scholar
  289. Sapolsky RM, Romero LM, Munck AU (2000) How do glucocorticoids influence stress responses? Integrating permissive, suppressive, stimulatory, and preparative actions. Endocr Rev 21:55–89PubMedGoogle Scholar
  290. Scherer T, O’Hare J, Diggs-Andrews K, Schweiger M, Cheng B, Lindtner C et al (2011) Brain insulin controls adipose tissue lipolysis and lipogenesis. Cell Metab 13:183–194PubMedPubMedCentralCrossRefGoogle Scholar
  291. Schioth HB, Kakizaki Y, Kohsaka A, Suda T, Watanobe H (2001) Agouti-related peptide prevents steroid-induced luteinizing hormone and prolactin surges in female rats. Neuroreport 12:687–690PubMedCrossRefGoogle Scholar
  292. Schneeberger M, Dietrich MO, Sebastián D, Imbernón M, Castaño C, Garcia A et al (2013) Mitofusin 2 in POMC neurons connects ER stress with leptin resistance and energy imbalance. Cell 155:172–187PubMedCrossRefGoogle Scholar
  293. Schrader M, Fahimi HD (2006) Peroxisomes and oxidative stress. Biochim Biophys Acta 1763:1755–1766PubMedCrossRefGoogle Scholar
  294. Schwanzel-Fukuda M, Abraham S, Crossin KL, Edelman GM, Pfaff DW (1992) Immunocytochemical demonstration of neural cell adhesion molecule (NCAM) along the migration route of luteinizing hormone-releasing hormone (LHRH) neurons in mice. J Comp Neurol 321:1–18PubMedCrossRefGoogle Scholar
  295. Schwartz MW, Sipols AJ, Marks JL, Sanacora G, White JD, Scheurink A et al (1992) Inhibition of hypothalamic neuropeptide Y gene expression by insulin. Endocrinology 130:3608–3616PubMedCrossRefGoogle Scholar
  296. Schwartz MW, Woods SC, Porte D, Seeley RJ, Baskin DG (2000) Central nervous system control of food intake. Nature 404:661–671PubMedGoogle Scholar
  297. Seimon R V, Hostland N, Silveira SL, Gibson AA, Sainsbury A (2013) Effects of energy restriction on activity of the hypothalamo-pituitary-adrenal axis in obese humans and rodents: implications for diet-induced changes in body composition. Horm Mol Biol Clin Invest 15:71–80Google Scholar
  298. Seoane-Collazo P, Fernø J, Gonzalez F, Diéguez C, Leis R, Nogueiras R, López M (2015) Hypothalamic-autonomic control of energy homeostasis. Endocrine 50:276–291PubMedCrossRefGoogle Scholar
  299. Seydoux J, Rohner-Jeanrenaud F, Assimacopoulos-Jeannet F, Jeanrenaud B, Girardier L (1981) Functional disconnection of brown adipose tissue in hypothalamic obesity in rats. Pflugers Arch - Eur J Physiol 390:1–4CrossRefGoogle Scholar
  300. Sheffer-Babila S, Sun Y, Israel DD, Liu S-M, Neal-Perry G, Chua SC (2013) Agouti-related peptide plays a critical role in leptin’s effects on female puberty and reproduction. Am J Physiol Endocrinol Metab 305:E1512–E1520PubMedPubMedCentralCrossRefGoogle Scholar
  301. Shen J, Tanida M, Yao J-F, Niijima A, Nagai K (2008) Biphasic effects of orexin-A on autonomic nerve activity and lipolysis. Neurosci Lett 444:166–171PubMedCrossRefGoogle Scholar
  302. Shi H, Kokoeva MV, Inouye K, Tzameli I, Yin H, Flier JS (2006) TLR4 links innate immunity and fatty acid-induced insulin resistance. J Clin Invest 116:3015–3025PubMedPubMedCentralCrossRefGoogle Scholar
  303. Shi X, Wang X, Li Q, Su M, Chew E, Wong ET et al (2013) Nuclear factor κB (NF-κB) suppresses food intake and energy expenditure in mice by directly activating the Pomc promoter. Diabetologia 56:925–936PubMedCrossRefGoogle Scholar
  304. Shimazu T (1979) Nervous control of peripheral metabolism. Acta Phys Polon 30:1–18Google Scholar
  305. Shimazu T, Ogasawara S (1975) Effects of hypothalamic stimulation on gluconeogenesis and glycolysis in rat liver. Am J Phys 228:1787–1793Google Scholar
  306. Shimizu I, Walsh K (2015) The whitening of Brown fat and its implications for weight Management in Obesity. Curr Obes Rep 4:224–229PubMedCrossRefGoogle Scholar
  307. Shiuchi T, Haque MS, Okamoto S, Inoue T, Kageyama H, Lee S et al (2009) Hypothalamic orexin stimulates feeding-associated glucose utilization in skeletal muscle via sympathetic nervous system. Cell Metab 10:466–480PubMedCrossRefGoogle Scholar
  308. Silver IA, Erecińska M (1998) Glucose-induced intracellular ion changes in sugar-sensitive hypothalamic neurons. J Neurophysiol 79:1733–1745PubMedGoogle Scholar
  309. Simonds SE, Pryor JT, Ravussin E, Greenway FL, Dileone R, Allen AM et al (2014) Leptin mediates the increase in blood pressure associated with obesity. Cell 159:1404–1416PubMedPubMedCentralCrossRefGoogle Scholar
  310. Simoni M, Gromoll J, Höppner W, Nieschlag E (1997) Molecular pathophysiology of the pituitary-gonadal axis. Adv Exp Med Biol 424:89–97PubMedCrossRefGoogle Scholar
  311. Singh R, Cuervo AM (2011) Autophagy in the cellular energetic balance. Cell Metab 13:495–504PubMedPubMedCentralCrossRefGoogle Scholar
  312. Sinha MK, Opentanova I, Ohannesian JP, Kolaczynski JW, Heiman ML, Hale J et al (1996) Evidence of free and bound leptin in human circulation. Studies in lean and obese subjects and during short-term fasting. J Clin Invest 98:1277–1282PubMedPubMedCentralCrossRefGoogle Scholar
  313. Sipols AJ, Baskin DG, Schwartz MW (1995) Effect of intracerebroventricular insulin infusion on diabetic hyperphagia and hypothalamic neuropeptide gene expression. Diabetes 44:147–151PubMedCrossRefGoogle Scholar
  314. Solinas G, Karin M (2010) JNK1 and IKKbeta: molecular links between obesity and metabolic dysfunction. FASEB J 24(8):2596–2611PubMedCrossRefGoogle Scholar
  315. Sousa-Ferreira L, Garrido M, Nascimento-Ferreira I, Nobrega C, Santos-Carvalho A, Alvaro AR et al (2011) Moderate long-term modulation of neuropeptide Y in hypothalamic arcuate nucleus induces energy balance alterations in adult rats (D Tomé, Ed). PLoS One 6:e22333PubMedPubMedCentralCrossRefGoogle Scholar
  316. Sousa-Ferreira L, de Almeida LP, Cavadas C (2014) Role of hypothalamic neurogenesis in feeding regulation. Trends Endocrinol Metab 25:80–88PubMedCrossRefGoogle Scholar
  317. Steculorum SM, Ruud J, Karakasilioti I, Backes H, Engström Ruud L, Timper K et al (2016) AgRP neurons control systemic insulin sensitivity via myostatin expression in brown adipose tissue. Cell 165:125–138PubMedPubMedCentralCrossRefGoogle Scholar
  318. Stephan FK, Zucker I (1972) Circadian rhythms in drinking behavior and locomotor activity of rats are eliminated by hypothalamic lesions. Proc Natl Acad Sci U S A 69(6):1583PubMedPubMedCentralCrossRefGoogle Scholar
  319. Stütz AM, Staszkiewicz J, Ptitsyn A, Argyropoulos G (2007) Circadian expression of genes regulating food intake*. Obesity 15:607–615PubMedCrossRefGoogle Scholar
  320. Sudo M, Minokoshi Y, Shimazu T (1991) Ventromedial hypothalamic stimulation enhances peripheral glucose uptake in anesthetized rats. Am J Phys 261:E298–E303Google Scholar
  321. Summers SA, Nelson DH (2005) A role for sphingolipids in producing the common features of type 2 diabetes, metabolic syndrome X, and Cushing’s syndrome. Diabetes 54:591–602PubMedCrossRefGoogle Scholar
  322. Swerdloff RS, Batt RA, Bray GA (1976) Reproductive hormonal function in the genetically obese (ob/ob) mouse. Endocrinology 98:1359–1364PubMedCrossRefGoogle Scholar
  323. Tajima D, Masaki T, Hidaka S, Kakuma T, Sakata T, Yoshimatsu H (2005) Acute central infusion of leptin modulates fatty acid mobilization by affecting lipolysis and mRNA expression for uncoupling proteins. Exp Biol Med 230:200–206Google Scholar
  324. Tanida M, Yamamoto N, Shibamoto T, Rahmouni K (2013) Involvement of hypothalamic AMP-activated protein kinase in leptin-induced sympathetic nerve activation. PLoS One 8:e56660PubMedPubMedCentralCrossRefGoogle Scholar
  325. Tanti JF, Jager J (2009) Cellular mechanisms of insulin resistance: role of stress-regulated serine kinases and insulin receptor substrates (IRS) serine phosphorylation. Curr Opin Pharmacol 9(6):753–762PubMedCrossRefGoogle Scholar
  326. Teff KL, Townsend RR (2004) Prolonged mild hyperglycemia induces vagally mediated compensatory increase in C-Peptide secretion in humans. J Clin Endocrinol Metab 89(11):5606–5613PubMedCrossRefGoogle Scholar
  327. Tengstrand B, Carlstrom K, Hafstrom I (2009) Gonadal hormones in men with rheumatoid arthritis—from onset through 2 years. J Rheumatol 36:887–892PubMedCrossRefGoogle Scholar
  328. Thaler JP, Yi C-X, Schur EA, Guyenet SJ, Hwang BH, Dietrich MO et al (2012) Obesity is associated with hypothalamic injury in rodents and humans. J Clin Investig 122:153–162PubMedCrossRefGoogle Scholar
  329. Thon M, Hosoi T, Ozawa K (2016) Possible integrative actions of Leptin and insulin signaling in the hypothalamus targeting energy homeostasis. Front Endocrinol 7Google Scholar
  330. Thorens B (2011) Brain glucose sensing and neural regulation of insulin and glucagon secretion. Diabetes Obes Metab 13(Suppl 1):82–88PubMedCrossRefGoogle Scholar
  331. Thurlby PL, Trayhurn P (1979) The role of thermoregulatory thermogenesis in the development of obesity in genetically-obese (ob/ob) mice pair-fed with lean siblings. Br J Nutr 42(3):377–385PubMedCrossRefGoogle Scholar
  332. Tiesjema B, Adan RAH, Luijendijk MCM, Kalsbeek A, la Fleur SE (2007) Differential effects of recombinant adeno-associated virus-mediated neuropeptide Y overexpression in the hypothalamic paraventricular nucleus and lateral hypothalamus on feeding behavior. J Neurosci 27:14139–14146PubMedCrossRefGoogle Scholar
  333. Tilbrook AJ, Turner AI, Clarke IJ (2002) Stress and reproduction: central mechanisms and sex differences in non-rodent species. Stress 5(2):83–100PubMedCrossRefGoogle Scholar
  334. Torri C, Pedrazzi P, Leo G, Müller EE, Cocchi D, Agnati LF, Zoli M (2002) Diet-induced changes in hypothalamic pro-opio-melanocortin mRNA in the rat hypothalamus. Peptides 23:1063–1068PubMedCrossRefGoogle Scholar
  335. Tortoriello DV, McMinn J, Chua SC (2004) Dietary-induced obesity and hypothalamic infertility in female DBA/2J mice. Endocrinology 145(3):1238–1247PubMedCrossRefGoogle Scholar
  336. Tsaousidou E, Paeger L, Belgardt BF, Pal M, Wunderlich CM, Brönneke H et al (2014) Distinct roles for jnk and ikk activation in agouti-related peptide neurons in the development of obesity and insulin resistance. Cell Rep 9:1495–1506PubMedCrossRefGoogle Scholar
  337. Tsatsanis C, Dermitzaki E, Avgoustinaki P, Malliaraki N, Mytaras V, Margioris AN (2015) The impact of adipose tissue-derived factors on the hypothalamic-pituitary-gonadal (HPG) axis. Hormones 14:549–562PubMedCrossRefGoogle Scholar
  338. Tschöp M, Weyer C, Tataranni PA, Devanarayan V, Ravussin E, Heiman ML (2001) Circulating ghrelin levels are decreased in human obesity. Diabetes 50:707–709PubMedCrossRefGoogle Scholar
  339. Tsukumo DML, Carvalho-Filho MA, Carvalheira JBC, Prada PO, Hirabara SM, Schenka AA et al (2007) Loss-of-function mutation in toll-like receptor 4 prevents diet-induced obesity and insulin resistance. Diabetes 56:1986–1998PubMedCrossRefGoogle Scholar
  340. Turek FW, Joshu C, Kohsaka A, Lin E, Ivanova G, McDearmon E et al (2005) Obesity and metabolic syndrome in circadian clock mutant mice. Science 308:1043–1045PubMedPubMedCentralCrossRefGoogle Scholar
  341. Ueno H, Nakazato M (2016) Mechanistic relationship between the vagal afferent pathway, central nervous system and peripheral organs in appetite regulation. J Diabetes Investig 7:812–818PubMedPubMedCentralCrossRefGoogle Scholar
  342. Ulrich-Lai YM, Herman JP (2009) Neural regulation of endocrine and autonomic stress responses. Nat Rev Neurosci 10:397–409PubMedPubMedCentralCrossRefGoogle Scholar
  343. Urayama A, Banks WA (2008) Starvation and triglycerides reverse the obesity-induced impairment of insulin transport at the blood-brain barrier. Endocrinology 149(7):3592PubMedPubMedCentralCrossRefGoogle Scholar
  344. Uysal KT, Wiesbrock SM, Marino MW, Hotamisligil GS (1997) Protection from obesity-induced insulin resistance in mice lacking TNF-alpha function. Nature 389:610–614PubMedCrossRefGoogle Scholar
  345. Valdearcos M, AW X, Koliwad SK (2015) Hypothalamic inflammation in the control of metabolic function. Annu Rev Physiol 77:131–160PubMedCrossRefGoogle Scholar
  346. Valenzano A, Moscatelli F, Triggiani AI, Capranica L, De Ioannon G, Piacentini MF, Mignardi S, Messina G, Villani S, Cibelli G (2016) Heart-rate changes after an ultraendurance swim from Italy to Albania: a case report. Int J Sports Physiol Perform 11(3):407–409PubMedCrossRefGoogle Scholar
  347. Wahab F, Atika B, Shahab M (2013) Kisspeptin as a link between metabolism and reproduction: evidences from rodent and primate studies. Metab Clin Exp 62:898–910PubMedCrossRefGoogle Scholar
  348. Wahlestedt C, Skagerberg G, Ekman R, Heilig M, Sundler F, Håkanson R (1987) Neuropeptide Y (NPY) in the area of the hypothalamic paraventricular nucleus activates the pituitary-adrenocortical axis in the rat. Brain Res 417:33–38PubMedCrossRefGoogle Scholar
  349. Waise TMZ, Toshinai K, Naznin F, NamKoong C, Md Moin AS, Sakoda H, Nakazato M (2015) One-day high-fat diet induces inflammation in the nodose ganglion and hypothalamus of mice. Biochem Biophys Res Commun 464:1157–1162PubMedCrossRefGoogle Scholar
  350. Wang X, Ge A, Cheng M, Guo F, Zhao M, Zhou X, Liu L, Yang N (2012) Increased hypothalamic inflammation associated with the susceptibility to obesity in rats exposed to high-fat diet. Exp Diabetes Res 2012:847246PubMedPubMedCentralGoogle Scholar
  351. Waterson MJ, Horvath TL (2015) Neuronal regulation of energy homeostasis: beyond the hypothalamus and feeding. Cell Metab 22:962–970PubMedCrossRefGoogle Scholar
  352. Whittle AJ, López M, Vidal-Puig A (2011) Using brown adipose tissue to treat obesity—the central issue. Trends Mol Med 17:405–411PubMedCrossRefGoogle Scholar
  353. Wiater MF, Mukherjee S, Li A-J, Dinh TT, Rooney EM, Simasko SM, Ritter S (2011) Circadian integration of sleep-wake and feeding requires NPY receptor-expressing neurons in the mediobasal hypothalamus. Am J Phys Regul Integr Comp Phys 301:R1569–R1583Google Scholar
  354. Williams LM (2012) Hypothalamic dysfunction in obesity. Proc Nutr Soc 71:521–533PubMedCrossRefGoogle Scholar
  355. Williams KW, Elmquist JK (2012) From neuroanatomy to behavior: central integration of peripheral signals regulating feeding behavior. Nat Neurosci 15:1350–1355PubMedPubMedCentralCrossRefGoogle Scholar
  356. Williams KW, Liu T, Kong X, Fukuda M, Deng Y, Berglund ED et al (2014) Xbp1s in Pomc neurons connects ER stress with energy balance and glucose homeostasis. Cell Metab 20:471–482PubMedPubMedCentralCrossRefGoogle Scholar
  357. Wu J, Cohen P, Spiegelman BM (2013) Adaptive thermogenesis in adipocytes: is beige the new brown? Genes Dev 27:234–250PubMedPubMedCentralCrossRefGoogle Scholar
  358. Yan J, Zhang H, Yin Y, Li J, Tang Y, Purkayastha S, Li L, Cai D (2014) Obesity- and aging-induced excess of central transforming growth factor-β potentiates diabetic development via an RNA stress response. Nat Med 20:1001–1008PubMedPubMedCentralCrossRefGoogle Scholar
  359. Yang JL, Liu DX, Jiang H, Pan F, Ho CS, Ho RC (2016) The effects of high-fat-diet combined with chronic unpredictable mild stress on depression-like behavior and leptin/leprb in male rats. Sci Rep 6:35239PubMedPubMedCentralCrossRefGoogle Scholar
  360. Yorimitsu T, Nair U, Yang Z, Klionsky DJ (2006) Endoplasmic reticulum stress triggers autophagy. J Biol Chem 281:30299–30304PubMedPubMedCentralCrossRefGoogle Scholar
  361. Zabolotny JM, Bence-Hanulec KK, Stricker-Krongrad A, Haj F, Wang Y, Minokoshi Y et al (2002) PTP1B regulates leptin signal transduction in vivo. Dev Cell 2:489–495PubMedCrossRefGoogle Scholar
  362. Zhang Y, Proenca R, Maffei M, Barone M, Leopold L, Friedman JM (1994) Positional cloning of the mouse obese gene and its human homologue. Nature 372:425–432PubMedCrossRefGoogle Scholar
  363. Zhang X, Zhang G, Zhang H, Karin M, Bai H, Cai D (2008) Hypothalamic IKKbeta/NF-kappaB and ER stress link overnutrition to energy imbalance and obesity. Cell 135:61–73PubMedPubMedCentralCrossRefGoogle Scholar
  364. Zhou Q, Chen H, Yang S, Li Y, Wang B, Chen Y, Wu X (2014) High-fat diet decreases the expression of Kiss1 mRNA and kisspeptin in the ovary, and increases ovulatory dysfunction in postpubertal female rats. Reprod Biol Endocrinol 12:127PubMedPubMedCentralCrossRefGoogle Scholar
  365. Zigman JM, Bouret SG, Andrews ZB (2016) Obesity impairs the action of the neuroendocrine ghrelin system. Trends Endocrinol Metab 27:54–63PubMedCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.CNC—Center for Neuroscience and Cell BiologyUniversity of CoimbraCoimbraPortugal
  2. 2.Faculty of PharmacyUniversity of CoimbraCoimbraPortugal

Personalised recommendations