Progress in Synthetic Prosthetic Mesh for Ventral Hernia Repair

Chapter

Abstract

For the past 40 years, polypropylene (PP) has been the main synthetic mesh to repair abdominal wall defects. Since the introduction of PP, other products have been commonly used, such as polyethylene terephthalate (PET) and expanded tetrafluoroethylene (ePTFE). In recent years, the demand for enhanced biocompatibility has resulted in improvements in surgical mesh, such as biologically coated synthetic mesh and synthetic resorbable mesh. Today there are over 80 different types of mesh and mesh composites available, and choosing the optimal surgical mesh for a particular procedure can be overwhelming (see Chap.  20). This chapter provides an update on the state of the current synthetic mesh used in ventral hernia repair, including new designs in the area of synthetic surgical mesh in order to improve the overall biocompatibility.

References

  1. 1.
    Brueing K, Butler CE, Ferzoco S, Franz M, Hultman CS, Kilbridge JF, Rosen M, Silverman RP, Vargo D. Incisional ventral hernias: review of the literature and recommendations regarding the grading and technique of repair. Surgery. 2010;148(3):544–58.CrossRefGoogle Scholar
  2. 2.
    Bendavid R. Recurrences: the fault of the surgeon. In: Schumpelick V, Nyhus LM, editors. Meshes: benefits and risks. New York: Springer; 2004. p. 55.Google Scholar
  3. 3.
    Arroyo A, Garcia P, Perez F, Andreu J, Candela F, Calpena R. Randomized clinical trial comparing suture and mesh repair of umbilical hernia in adults. Br J Surg. 2001;88:1321–3.CrossRefGoogle Scholar
  4. 4.
    Kummerow K, Huang LC, Faqih A, Phillips SE, Baucom RB, Pierce RA, Holzman MD, Sharp KW, Poulose BK. Hidden morbidity of ventral hernia repair with mesh: as concerning as common bile duct injury? J Am Coll Surg. 2017;224:35–42.CrossRefGoogle Scholar
  5. 5.
    Tentes A, Xanthoulis AI, Mirelis CG, et al. Nuttall technique: a method for subumbilical incisional hernia repair revised. Langenbeck’s Arch Surg. 2008;393:191–4.CrossRefGoogle Scholar
  6. 6.
    Hadad I, Small W, Dumanian GA. Repair of massive ventral hernias with the separation of parts technique: reversal of the lost domain. Am Surg. 2009;75:301–6.PubMedGoogle Scholar
  7. 7.
    Lanier ST, Fligor JE, Miller KR, Dumanian GA. Reliable complex abdominal wall hernia repairs with a narrow, well-fixed retrorectus polypropylene mesh: a review of over 100 consecutive cases. Surgery. 2016;160(6):1508–16.CrossRefGoogle Scholar
  8. 8.
    Shankaran V, Weber DJ, Reed RL, Luchette FA. A review of available prosthetics for ventral hernia repair. Ann Surg. 2011;253(1):16–26.CrossRefGoogle Scholar
  9. 9.
    Alkhoury F, Helton S, Ippolito RJ. Cost and clinical outcomes of laparoscopic ventral hernia repair using intraperitoneal nonheavyweight polypropylene mesh. Surg Laparosc Endosc Percutan Tech. 2011;21(2):82–5.CrossRefGoogle Scholar
  10. 10.
    Sailes FC, Walls J, Guelig D, Mirzabeigi M, Long WD, Crawford A, Moore JH, Copit SE, Tuma GA, Fox J. Synthetic and biological mesh in component separations: a 10-year single institution review. Ann Plast Surg. 2010;64(5):696–8.PubMedGoogle Scholar
  11. 11.
    Van’t RM, Vrijland WW, Lange JF, Hop WC, Jeekel J, Bonjer HJ. Mesh repair of incisional hernia: comparison of laparoscopic and open repair. Eur J Surg. 2002;168(12):684–9.CrossRefGoogle Scholar
  12. 12.
    Yavuz N, Ipek T, As A, Kapan M, Eyuboglu E, Erguney S. Laparoscopic repair of ventral and incisional hernias: our experience in 150 patients. J Laparoendosc Adv Surg Tech A. 2005;6:601–5.CrossRefGoogle Scholar
  13. 13.
    Patel PP, Love ME, Ewing JA, Warren JA, Cobb WS, Carbonell AM. Risks of subsequent abdominal operations after laparoscopic ventral hernia repair. Surg Endosc. 2017;31:823–8.CrossRefGoogle Scholar
  14. 14.
    Nardi M Jr, Millo P, Brachet Contul R, Lorusso R, Usai A, Grivon M, Persico F, Ponte E, Bocchia P, Razzi S. Laparoscopic ventral hernia repair with composite mesh: analysis of risk factors for recurrence in 185 patients with 5 years follow-up. Int J Surg. 2017;40:38–44.CrossRefGoogle Scholar
  15. 15.
    Mercoli H, Tzedakis S, D’Urso A, Nedelcu M, Memeo R, Meyer N, Vix M, Perretta S, Mutter D. Postoperative complications as an independent risk factor for recurrence after laparoscopic ventral hernia repair: a prospective study of 417 patients with long-term follow-up. Surg Endosc. 2017;31:1469–77.CrossRefGoogle Scholar
  16. 16.
    Cozad M, Ramshaw BR, Grant DN, Bachman SL, Grant DA, Grant SA. Materials characterization of explanted polypropylene, polyethylene terephthalate, and expanded polytetrafluoroethylene composites: spectral and thermal analysis. J Biomed Mater Res B Appl Biomater. 2010;49B:455–62.Google Scholar
  17. 17.
    Costello CR, Bachman SL, Ramshaw BR, Grant SA. Materials characterization of explanted heavyweight polypropylene hernia meshes. J Biomed Mater Res B Appl Biomater. 2007;83B:44–9.CrossRefGoogle Scholar
  18. 18.
    Smith SE, Cozad MJ, Grant DA, Ramshaw B, Grant SA. Materials characterization of explanted polypropylene hernia mesh: patient factor correlation. J Biomater Appl. 2016;30(7):1026–35.CrossRefGoogle Scholar
  19. 19.
    Gonzalez R, et al. Relationship between tissue ingrowth and mesh contraction. World J Surg. 2005;29(8):1038–43.CrossRefGoogle Scholar
  20. 20.
    Pierce RA, Perrone JM, Nimeri A, Sexton JA, Walcutt J, Frisella MM, Matthews BD. 120-day comparative analysis of adhesion grade and quantity, mesh contraction, and tissue response to a novel omega-3 fatty acid bioabsorbable barrier macroporous mesh after intraperitoneal placement. Surg Innov. 2009;16:46–54.CrossRefGoogle Scholar
  21. 21.
    Schmidbauer S, Ladurner R, Hallfeldt KK, Mussack T. Heavy-weight versus low-weight polypropylene meshes for open sublay mesh repair of incisional hernia. Eur J Med Res. 2005;10(6):247–53.PubMedGoogle Scholar
  22. 22.
    Brown CN, Finch JG. Which mesh for hernia repair? Ann R Coll Surg Engl. 2010;92:272–8.CrossRefGoogle Scholar
  23. 23.
    Weyhe D, Schmitz I, Belyaev O, Grabs R, Müller K-M, Uhl W, Zumtobel V. Experimental comparison of monofile light and heavy polypropylene meshes: less weight does not mean less biological response. World J Surg. 2006;30(8):1586–91.CrossRefGoogle Scholar
  24. 24.
    Gemma Pascual G, Rodrıguez M, Gomez-Giln V, Garcıa-Honduvilla N, Bujan J, Bello JM. Early tissue incorporation and collagen deposition in lightweight polypropylene meshes: bioassay in an experimental model of ventral hernia. Surgery. 2008;144(3):427–35.CrossRefGoogle Scholar
  25. 25.
    Groene SA, Prasad T, Lincourt AE, Augenstein VA, Sing R, Heniford BT. Prospective, multi-institutional surgical and quality-of-life outcomes comparison of heavyweight, midweight, and lightweight mesh in open ventral hernia repair. Am J Surg. 2016;212:1054–62.CrossRefGoogle Scholar
  26. 26.
    Burger JWA, Halm JA, Wijsmuller AR, Raa ST, Jeekel J. Evaluation of new prosthetic meshes for ventral hernia repair. Surg Endosc. 2006;20(8):1320–5.CrossRefGoogle Scholar
  27. 27.
    Scheidback H, Tamme C, Tannapfel A, Lippert H, Kockerling F. In vivo studies comparing the biocompatibility of various polypropylene meshes and their handling properties during endoscopic total extraperitoneal (TEP) patchplasty: an experimental study in pigs. Surg Endosc. 2004;18(2):211–20.CrossRefGoogle Scholar
  28. 28.
    Sehreinemacher MHF, Emans PJ, Gijbels MJJ, Greve JWM, Beets GL, Bouvy ND. Degradation of mesh coatings and intraperitoneal adhesion formation in an experimental model. Br J Surg. 2009;96(3):305–13.CrossRefGoogle Scholar
  29. 29.
    Kong CY, Lai LL, Khoo AYY, Rahman NA, Chin KF. Inflammatory reaction to fish oil coated polypropylene mesh used for laparoscopic incisional hernia repair: a case report. BMC Surg. 2016;16(1):123.CrossRefGoogle Scholar
  30. 30.
    Poppas JJ, Sung CM, Magro J, Chen J, Toyohara JP, Ramshaw BJ, Felsen D. Hydrogel coated mesh decreases tissue reaction resulting from polypropylene mesh implant: implication in hernia repair. Hernia. 2016;20(4):623–32.CrossRefGoogle Scholar
  31. 31.
    Rivolo P, Nisticò R, Barone F, Giulia Faga M, Duraccio D, Martorana S, Ricciardi S, Magnacca G. Study of the adhesive properties versus stability/aging of hernia repair meshes after deposition of RF activated plasma polymerized acrylic acid coating. Mater Sci Eng C. 2016;65:287–94.CrossRefGoogle Scholar
  32. 32.
    Nicolo E, Cahalan L, Johnson G, Gartner M, Cahalan P, Fill BJ, Hussain A, Speakman JW. Surface treated polymeric synthetic hernia mesh prosthesis, surface treated sutures and staples and methods of manufacturing the same. Original Assignee: Ension, Inc. US 20130110137 A1. Apr 2 2007.Google Scholar
  33. 33.
    Whelove OE, Cozad MJ, Lee B-D, Sengupta S, Bachman SL, Ramshaw BJ, Grant SA. Development and in vitro studies of a polyethylene terephthalate-gold nanoparticle scaffold for improved biocompatibility. J Biomed Mater Res B Appl Biomater. 2011;99B(1):142–9.CrossRefGoogle Scholar
  34. 34.
    Grant DN, Benson J, Cozad MJ, Whelove OE, Bachman SL, Ramshaw BJ, Grant DA, Grant SA. Conjugation of gold nanoparticles to polypropylene mesh for enhanced biocompatibility. J Mater Sci Mater Med. 2011;22(12):2803–12.CrossRefGoogle Scholar
  35. 35.
    Pascual G, Sotomayor S, Rodriguez M, Bayon Y, Bellon JM. Tissue integration and inflammatory reaction in full-thickness abdominal wall repair using an innovative composite mesh. Hernia. 2016;20:607–22.CrossRefGoogle Scholar
  36. 36.
    Scheuerlein H, Erdmann J, Rauchfuss F, Dittmar Y, Jandt K, Jandt KD, Settmacher U, Zankovych S. Preparation and in-vitro analysis of a polyethylenimine coating on hernia meshes. Zentralbl Chir. 2015;140(2):170–8.CrossRefGoogle Scholar
  37. 37.
    Vermet G, Degoutin S, Chai F, Maton M, Flores C, Neut C, Danjou PE, Martel B, Blanchemain N. Cyclodextrin modified PLLA parietal reinforcement implant with prolonged antibacterial activity. Acta Biomater. 2017;53:222–32.CrossRefGoogle Scholar
  38. 38.
    Majumder A, Gao Y, Sadava EE, Anderson JM, Novitsky Y. Cell-coating affects tissue integration of synthetic and biologic meshes: comparative analysis of the onlay and underlay mesh positioning in rats. Surg Endosc. 2016;30:4445–53.CrossRefGoogle Scholar
  39. 39.
    Eriksen JR, Gogenur I, Rosenberg J. Choice of mesh for laparoscopic ventral hernia repair. Hernia. 2007;11:481–92.CrossRefGoogle Scholar
  40. 40.
    Liang MK, Holihan JL, Itani K, Alawadi ZM, Gonzalez JR, Askenasy EP, Ballecer C, Chong HS, Goldblatt MI, Greenberg JA, Harvin JA, Keith JN, Martindale RG, Orenstein S, Richmond B, Roth JS, Szotek P, Towfigh S, Tsuda S, Vaziri K, Berger DH. Ventral hernia management: expert consensus guided by systematic review. Ann Surg. 2017;265(1):80–9.CrossRefGoogle Scholar
  41. 41.
    Bittner R, Bingener-Casey J, Dietz U, et al. Guidelines for laparoscopic treatment of ventral and incisional abdominal wall hernias (International Endohernia Society) (IEHS)-part 1. Surg Endosc. 2014;28:2–29.  https://doi.org/10.1007/s00464-013-3170-6.CrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.College of EngineeringUniversity of MissouriColumbiaUSA
  2. 2.University of Tennessee Medical CenterKnoxvilleUSA

Personalised recommendations