Skip to main content

Pentose Shunt, Glucose-6-Phosphate Dehydrogenase, NADPH Redox, and Stem Cells in Pulmonary Hypertension

  • Chapter
  • First Online:
Pulmonary Vasculature Redox Signaling in Health and Disease

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 967))

Abstract

Redox signaling plays a critical role in the pathophysiology of cardiovascular diseases. The pentose phosphate pathway is a major source of NADPH redox in the cell. The activities of glucose-6-phosphate dehydrogenase (the rate-limiting enzyme in the pentose shunt) and glucose flux through the shunt pathway is increased in various lung cells including, the stem cells, in pulmonary hypertension. This chapter discusses the importance of the shunt pathway and glucose-6-phosphate dehydrogenase in the pathogenesis of pulmonary artery remodeling and occlusive lesion formation within the hypertensive lungs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
EUR 29.95
Price includes VAT (Austria)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 117.69
Price includes VAT (Austria)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR 164.99
Price includes VAT (Austria)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
EUR 164.99
Price includes VAT (Austria)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Simonneau, G., et al. (2013). Updated clinical classification of pulmonary hypertension. Journal of the American College of Cardiology, 62(25 Suppl), D34–D41.

    Article  PubMed  Google Scholar 

  2. Vaillancourt, M., et al. (2015). Adaptation and remodelling of the pulmonary circulation in pulmonary hypertension. The Canadian Journal of Cardiology, 31(4), 407–415.

    Article  PubMed  Google Scholar 

  3. McDonald, R. A., et al. (2012). MicroRNA and vascular remodelling in acute vascular injury and pulmonary vascular remodelling. Cardiovascular Research, 93(4), 594–604.

    Article  CAS  PubMed  Google Scholar 

  4. Shimoda, L. A., & Laurie, S. S. (2013). Vascular remodeling in pulmonary hypertension. Journal of Molecular Medicine (Berlin), 91(3), 297–309.

    Article  CAS  Google Scholar 

  5. Perros, F., et al. (2008). Platelet-derived growth factor expression and function in idiopathic pulmonary arterial hypertension. American Journal of Respiratory and Critical Care Medicine, 178(1), 81–88.

    Article  CAS  PubMed  Google Scholar 

  6. Ogawa, A., et al. (2005). Prednisolone inhibits proliferation of cultured pulmonary artery smooth muscle cells of patients with idiopathic pulmonary arterial hypertension. Circulation, 112(12), 1806–1812.

    Article  CAS  PubMed  Google Scholar 

  7. Rubin, L. J. (2012). Endothelin receptor antagonists for the treatment of pulmonary artery hypertension. Life Sciences, 91(13–14), 517–521.

    Article  CAS  PubMed  Google Scholar 

  8. Horinouchi, T., et al. (2013). Endothelin receptor signaling: New insight into its regulatory mechanisms. Journal of Pharmacological Sciences, 123(2), 85–101.

    Article  CAS  PubMed  Google Scholar 

  9. Giaid, A., et al. (1993). Expression of endothelin-1 in the lungs of patients with pulmonary hypertension. The New England Journal of Medicine, 328(24), 1732–1739.

    Article  CAS  PubMed  Google Scholar 

  10. Elton, T. S., et al. (1992). Normobaric hypoxia stimulates endothelin-1 gene expression in the rat. The American Journal of Physiology, 263(6 Pt 2), R1260–R1264.

    CAS  PubMed  Google Scholar 

  11. Li, H., et al. (1994). Increased endothelin receptor gene expression in hypoxic rat lung. The American Journal of Physiology, 266(5 Pt 1), L553–L560.

    CAS  PubMed  Google Scholar 

  12. Ivy, D. D., et al. (1998). Increased lung preproET-1 and decreased ETB-receptor gene expression in fetal pulmonary hypertension. The American Journal of Physiology, 274(4 Pt 1), L535–L541.

    CAS  PubMed  Google Scholar 

  13. Voelkel, N. F., et al. (2012). Pathobiology of pulmonary arterial hypertension and right ventricular failure. The European Respiratory Journal, 40(6), 1555–1565.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Rabinovitch, M., et al. (2014). Inflammation and immunity in the pathogenesis of pulmonary arterial hypertension. Circulation Research, 115(1), 165–175.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Sutendra, G., et al. (2011). Pyruvate dehydrogenase inhibition by the inflammatory cytokine TNFalpha contributes to the pathogenesis of pulmonary arterial hypertension. Journal of Molecular Medicine (Berlin), 89(8), 771–783.

    Article  CAS  Google Scholar 

  16. Hashimoto-Kataoka, T., et al. (2015). Interleukin-6/interleukin-21 signaling axis is critical in the pathogenesis of pulmonary arterial hypertension. Proceedings of the National Academy of Sciences of the United States of America, 112(20), E2677–E2686.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. El Kasmi, K. C., et al. (2014). Adventitial fibroblasts induce a distinct proinflammatory/profibrotic macrophage phenotype in pulmonary hypertension. Journal of Immunology, 193(2), 597–609.

    Article  Google Scholar 

  18. Devic, S. (2016). Warburg effect - a consequence or the cause of carcinogenesis? Journal of Cancer, 7(7), 817–822.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Paolicchi, E., et al. (2016). Targeting hypoxic response for cancer therapy. Oncotarget, 7(12), 13464–13478.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Yi, W., et al. (2012). Phosphofructokinase 1 glycosylation regulates cell growth and metabolism. Science, 337(6097), 975–980.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Xu, W., et al. (2007). Alterations of cellular bioenergetics in pulmonary artery endothelial cells. Proceedings of the National Academy of Sciences of the United States of America, 104(4), 1342–1347.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Hagan, G., et al. (2011). (18)FDG PET imaging can quantify increased cellular metabolism in pulmonary arterial hypertension: A proof-of-principle study. Pulmonary Circulation, 1(4), 448–455.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Zhao, L., et al. (2013). Heterogeneity in lung (18)FDG uptake in pulmonary arterial hypertension: Potential of dynamic (18)FDG positron emission tomography with kinetic analysis as a bridging biomarker for pulmonary vascular remodeling targeted treatments. Circulation, 128(11), 1214–1224.

    CAS  PubMed  Google Scholar 

  24. Marsboom, G., et al. (2012). Lung (1)(8)F-fluorodeoxyglucose positron emission tomography for diagnosis and monitoring of pulmonary arterial hypertension. American Journal of Respiratory and Critical Care Medicine, 185(6), 670–679.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Li, M., et al. (2016). Metabolic reprogramming regulates the proliferative and inflammatory phenotype of adventitial fibroblasts in pulmonary hypertension through the transcriptional Corepressor C-terminal binding protein-1. Circulation, 134(15), 1105–1121.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Colvin, K. L., & Yeager, M. E. (2015). Proteomics of pulmonary hypertension: Could personalized profiles lead to personalized medicine? Proteomics. Clinical Applications, 9(1–2), 111–120.

    Article  CAS  PubMed  Google Scholar 

  27. Yao, C., et al. (2015). Protein expression by human pulmonary artery smooth muscle cells containing a mutation and the action of ET-1 as determined by proteomic mass spectrometry. International Journal of Mass Spectrometry, 378, 347–359.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Fessel, J. P., et al. (2012). Metabolomic analysis of bone morphogenetic protein receptor type 2 mutations in human pulmonary endothelium reveals widespread metabolic reprogramming. Pulmonary Circulation, 2(2), 201–213.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Chettimada, S., et al. (2015). Hypoxia-induced glucose-6-phosphate dehydrogenase overexpression and -activation in pulmonary artery smooth muscle cells: Implication in pulmonary hypertension. American Journal of Physiology. Lung Cellular and Molecular Physiology, 308(3), L287–L300.

    Article  CAS  PubMed  Google Scholar 

  30. Boehme, J., et al. (2016). Pulmonary artery smooth muscle cell hyperproliferation and metabolic shift triggered by pulmonary overcirculation. American Journal of Physiology. Heart and Circulatory Physiology, 311(4), H944–H957.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Sun, X., et al. (2014). Endothelin-1 induces a glycolytic switch in pulmonary arterial endothelial cells via the mitochondrial translocation of endothelial nitric oxide synthase. American Journal of Respiratory Cell and Molecular Biology, 50(6), 1084–1095.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Rafikova, O., et al. (2016). Metabolic changes precede the development of pulmonary hypertension in the Monocrotaline exposed rat lung. PloS One, 11(3), e0150480.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Gupte, S. A., et al. (2005). Cytosolic NADPH may regulate differences in basal Nox oxidase-derived superoxide generation in bovine coronary and pulmonary arteries. American Journal of Physiology. Heart and Circulatory Physiology, 288(1), H13–H21.

    Article  CAS  PubMed  Google Scholar 

  34. Karimi Galougahi, K., Ashley, E. A., & Ali, Z. A. (2015). Redox regulation of vascular remodeling. Cellular and Molecular Life Sciences, 73(2), 349–363.

    Article  PubMed  Google Scholar 

  35. Biscaglia, S., et al. (2015). Dual antiplatelet therapy in patients with glucose-6-phosphate dehydrogenase deficiency undergoing PCI with drug-eluting stents. Journal of Atherosclerosis and Thrombosis, 22(5), 535–541.

    Article  PubMed  Google Scholar 

  36. Gupte, S. A. (2008). Glucose-6-phosphate dehydrogenase: A novel therapeutic target in cardiovascular diseases. Current Opinion in Investigational Drugs, 9(9), 993–1000.

    CAS  PubMed  Google Scholar 

  37. Gupte, S. A., et al. (2002). Inhibitors of pentose phosphate pathway cause vasodilation: Involvement of voltage-gated potassium channels. The Journal of Pharmacology and Experimental Therapeutics, 301(1), 299–305.

    Article  CAS  PubMed  Google Scholar 

  38. Gupte, R. S., et al. (2010). Activation of glucose-6-phosphate dehydrogenase promotes acute hypoxic pulmonary artery contraction. The Journal of Biological Chemistry, 285(25), 19561–19571.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Chettimada, S., et al. (2012). Glc-6-PD and PKG contribute to hypoxia-induced decrease in smooth muscle cell contractile phenotype proteins in pulmonary artery. American Journal of Physiology. Lung Cellular and Molecular Physiology, 303(1), L64–L74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Lakhkar, A., et al. (2016). 20-HETE-induced mitochondrial superoxide and inflammatory phenotype in vascular smooth muscle is prevented by glucose-6-phosphate dehydrogenase inhibition. American Journal of Physiology. Heart and Circulatory Physiology, 310(9), H1107–H1117.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Weinberg, F., et al. (2010). Mitochondrial metabolism and ROS generation are essential for Kras-mediated tumorigenicity. Proceedings of the National Academy of Sciences of the United States of America, 107(19), 8788–8793.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Bouchier-Hayes, L., et al. (2009). Characterization of cytoplasmic caspase-2 activation by induced proximity. Molecular Cell, 35(6), 830–840.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Nutt, L. K., et al. (2005). Metabolic regulation of oocyte cell death through the CaMKII-mediated phosphorylation of caspase-2. Cell, 123(1), 89–103.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Wang, X., et al. (2016). G6PD downregulation triggered growth inhibition and induced apoptosis by regulating STAT3 signaling pathway in esophageal squamous cell carcinoma. Tumour Biology, 37(1), 781–789.

    Article  CAS  PubMed  Google Scholar 

  45. Cai, T., et al. (2015). Glucose-6-phosphate dehydrogenase and NADPH oxidase 4 control STAT3 activity in melanoma cells through a pathway involving reactive oxygen species, c-SRC and SHP2. American Journal of Cancer Research, 5(5), 1610–1620.

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Buchakjian, M. R., & Kornbluth, S. (2010). The engine driving the ship: Metabolic steering of cell proliferation and death. Nature Reviews. Molecular Cell Biology, 11(10), 715–727.

    Article  CAS  PubMed  Google Scholar 

  47. Leopold, J. A., et al. (2003). Glucose-6-phosphate dehydrogenase modulates vascular endothelial growth factor-mediated angiogenesis. The Journal of Biological Chemistry, 278(34), 32100–32106.

    Article  CAS  PubMed  Google Scholar 

  48. Mannic, T., Viguie, J., & Rossier, M. F. (2015). In vivo and in vitro evidences of dehydroepiandrosterone protective role on the cardiovascular system. International Journal of Endocrinology Metabolism, 13(2), e24660.

    Article  PubMed  PubMed Central  Google Scholar 

  49. Schwartz, A. G. (1995). And L.L. Pashko, mechanism of cancer preventive action of DHEA. Role of glucose-6-phosphate dehydrogenase. Annals of the New York Academy of Sciences, 774, 180–186.

    Article  CAS  PubMed  Google Scholar 

  50. Schwartz, A. G., & Pashko, L. L. (1995). Cancer prevention with dehydroepiandrosterone and non-androgenic structural analogs. Journal of Cellular Biochemistry. Supplement, 22, 210–217.

    Article  CAS  PubMed  Google Scholar 

  51. Oka, M., et al. (2007). Dehydroepiandrosterone upregulates soluble guanylate cyclase and inhibits hypoxic pulmonary hypertension. Cardiovascular Research, 74(3), 377–387.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Alzoubi, A., et al. (2013). Dehydroepiandrosterone restores right ventricular structure and function in rats with severe pulmonary arterial hypertension. American Journal of Physiology. Heart and Circulatory Physiology, 304, H1708–H1718.

    Article  CAS  PubMed  Google Scholar 

  53. Hampl, V., et al. (2003). Dehydroepiandrosterone sulphate reduces chronic hypoxic pulmonary hypertension in rats. The European Respiratory Journal, 21(5), 862–865.

    Article  CAS  PubMed  Google Scholar 

  54. Bonnet, S., et al. (2003). Dehydroepiandrosterone (DHEA) prevents and reverses chronic hypoxic pulmonary hypertension. Proceedings of the National Academy of Sciences of the United States of America, 100(16), 9488–9493.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Rawat, D. K., et al. (2014). Increased reactive oxygen species, metabolic maladaptation, and autophagy contribute to pulmonary arterial hypertension-induced ventricular hypertrophy and diastolic heart failure. Hypertension, 64(6), 1266–1274.

    Article  CAS  PubMed  Google Scholar 

  56. Ventetuolo, C. E., et al. (2016). Higher estradiol and lower Dehydroepiandrosterone-sulfate levels are associated with pulmonary arterial hypertension in men. American Journal of Respiratory and Critical Care Medicine, 193(10), 1168–1175.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. de La Roque, D. (2012). E., et al., Dehydroepiandrosterone (DHEA) improves pulmonary hypertension in chronic obstructive pulmonary disease (COPD): A pilot study. Annales d'endocrinologie, 73(1), 20–25.

    Article  Google Scholar 

  58. Weigmann, A., et al. (1997). Prominin, a novel microvilli-specific polytopic membrane protein of the apical surface of epithelial cells, is targeted to plasmalemmal protrusions of non-epithelial cells. Proceedings of the National Academy of Sciences of the United States of America, 94(23), 12425–12430.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Yin, A. H., et al. (1997). AC133, a novel marker for human hematopoietic stem and progenitor cells. Blood, 90(12), 5002–5012.

    CAS  PubMed  Google Scholar 

  60. Singh, S. K., et al. (2003). Identification of a cancer stem cell in human brain tumors. Cancer Research, 63(18), 5821–5828.

    CAS  PubMed  Google Scholar 

  61. Singh, S. K., et al. (2004). Identification of human brain tumour initiating cells. Nature, 432(7015), 396–401.

    Article  CAS  PubMed  Google Scholar 

  62. Schmohl, J. U., & Vallera, D. A. (2016). CD133, selectively targeting the root of cancer. Toxins (Basel), 8(6), E615.

    Article  Google Scholar 

  63. Bradshaw, A., et al. (2016). Cancer stem cell hierarchy in Glioblastoma Multiforme. Frontiers in Surgery, 3, 21.

    PubMed  PubMed Central  Google Scholar 

  64. Shmelkov, S. V., et al. (2005). AC133/CD133/Prominin-1. The International Journal of Biochemistry & Cell Biology, 37(4), 715–719.

    Article  CAS  Google Scholar 

  65. Suda, T., Takubo, K., & Semenza, G. L. (2011). Metabolic regulation of hematopoietic stem cells in the hypoxic niche. Cell Stem Cell, 9(4), 298–310.

    Article  CAS  PubMed  Google Scholar 

  66. Simsek, T., et al. (2010). The distinct metabolic profile of hematopoietic stem cells reflects their location in a hypoxic niche. Cell Stem Cell, 7(3), 380–390.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Chettimada, S., et al. (2014). Glucose-6-phosphate dehydrogenase plays a critical role in hypoxia-induced CD133+ progenitor cells self-renewal and stimulates their accumulation in the lungs of pulmonary hypertensive rats. American Journal of Physiology. Lung Cellular and Molecular Physiology, 307(7), L545–L556.

    Article  CAS  PubMed  Google Scholar 

  68. Del Papa, N., et al. (2004). Circulating endothelial cells as a marker of ongoing vascular disease in systemic sclerosis. Arthritis and Rheumatism, 50(4), 1296–1304.

    Article  PubMed  Google Scholar 

  69. Nevskaya, T., et al. (2008). Circulating endothelial progenitor cells in systemic sclerosis: Relation to impaired angiogenesis and cardiovascular manifestations. Clinical and Experimental Rheumatology, 26(3), 421–429.

    CAS  PubMed  Google Scholar 

  70. Asosingh, K., et al. (2008). Circulating angiogenic precursors in idiopathic pulmonary arterial hypertension. The American Journal of Pathology, 172(3), 615–627.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Montani, D., et al. (2011). C-kit-positive cells accumulate in remodeled vessels of idiopathic pulmonary arterial hypertension. American Journal of Respiratory and Critical Care Medicine, 184(1), 116–123.

    Article  PubMed  Google Scholar 

  72. Pizarro, S., et al. (2014). Circulating progenitor cells and vascular dysfunction in chronic obstructive pulmonary disease. PloS One, 9(8), e106163.

    Article  PubMed  PubMed Central  Google Scholar 

  73. Farha, S., et al. (2011). Hypoxia-inducible factors in human pulmonary arterial hypertension: A link to the intrinsic myeloid abnormalities. Blood, 117(13), 3485–3493.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Xia, L., et al. (2009). Senescent endothelial progenitor cells from dogs with pulmonary arterial hypertension: A before-after self-controlled study. The Journal of Physiological Sciences, 59(6), 429–437.

    Article  CAS  PubMed  Google Scholar 

  75. Majka, S. M., et al. (2008). Evidence for cell fusion is absent in vascular lesions associated with pulmonary arterial hypertension. American Journal of Physiology. Lung Cellular and Molecular Physiology, 295(6), L1028–L1039.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Toshner, M., et al. (2009). Evidence of dysfunction of endothelial progenitors in pulmonary arterial hypertension. American Journal of Respiratory and Critical Care Medicine, 180(8), 780–787.

    Article  PubMed  PubMed Central  Google Scholar 

  77. Yao, W., et al. (2009). Identification of putative endothelial progenitor cells (CD34+CD133+Flk-1+) in endarterectomized tissue of patients with chronic thromboembolic pulmonary hypertension. American Journal of Physiology. Lung Cellular and Molecular Physiology, 296(6), L870–L878.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. West, J., et al. (2008). Mice expressing BMPR2R899X transgene in smooth muscle develop pulmonary vascular lesions. American Journal of Physiology. Lung Cellular and Molecular Physiology, 295(5), L744–L755.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Asosingh, K., et al. (2012). Pulmonary vascular disease in mice xenografted with human BM progenitors from patients with pulmonary arterial hypertension. Blood, 120(6), 1218–1227.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Anjum, F., et al. (2012). Characterization of altered patterns of endothelial progenitor cells in sickle cell disease related pulmonary arterial hypertension. Pulmonary Circulation, 2(1), 54–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Shirai, Y., et al. (2015). Elevated levels of pentraxin 3 in systemic sclerosis: Associations with vascular manifestations and defective vasculogenesis. Arthritis & Rhematology, 67(2), 498–507.

    Article  CAS  Google Scholar 

  82. Foris, V., et al. (2016). CD133+ cells in pulmonary arterial hypertension. The European Respiratory Journal, 48(2), 459–469.

    Article  CAS  PubMed  Google Scholar 

  83. Yue, W. S., et al. (2010). Smoking is associated with depletion of circulating endothelial progenitor cells and elevated pulmonary artery systolic pressure in patients with coronary artery disease. The American Journal of Cardiology, 106(9), 1248–1254.

    Article  PubMed  Google Scholar 

  84. Lundgrin, E. L., et al. (2013). Fasting 2-deoxy-2-[18F]fluoro-D-glucose positron emission tomography to detect metabolic changes in pulmonary arterial hypertension hearts over 1 year. Annals of the American Thoracic Society, 10(1), 1–9.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sachin Gupte M.D., Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Hashimoto, R., Gupte, S. (2017). Pentose Shunt, Glucose-6-Phosphate Dehydrogenase, NADPH Redox, and Stem Cells in Pulmonary Hypertension. In: Wang, YX. (eds) Pulmonary Vasculature Redox Signaling in Health and Disease. Advances in Experimental Medicine and Biology, vol 967. Springer, Cham. https://doi.org/10.1007/978-3-319-63245-2_4

Download citation

Publish with us

Policies and ethics