Skip to main content

Hypoxia and Local Inflammation in Pulmonary Artery Structure and Function

  • Chapter
  • First Online:
Pulmonary Vasculature Redox Signaling in Health and Disease

Abstract

Hypoxia is recognized as a contributor to pulmonary vascular diseases such as pulmonary hypertension. Hypoxia-induced inflammatory changes can enhance structural and functional changes in pulmonary artery (PA) in the context of PH. Accordingly, understanding how hypoxia and inflammation are linked in the context of pulmonary artery structure and function could be relevant towards development of novel therapies for PH. In this regard, factors such as thymic stromal lymphopoietin (TSLP), an inflammatory cytokine, and brain-derived neurotrophic factor (BDNF), a neurotrophin, have been found critical for nonvascular systems such as airway and asthma. While TSLP canonically affects the immune system, in nonvascular systems, noncanonical effects such as altered [Ca2+]i and cell proliferation have been noted: aspects also relevant to the PA, where there is currently little to no data. Similarly, better known in the nervous system, there is increasing evidence that BDNF is locally produced by structural cells of the airway and can contribute to asthma pathophysiology. In this chapter, we summarize the potential relevance of factors such as TSLP and BDNF to the PA and in the context of hypoxia influences towards development of PH. We focus on cell sources and targets such as PA endothelial cells (PAECs) and smooth muscle cells (PASMCs), and the effects of TSLP or BDNF on intracellular Ca2+ responses to vasoconstrictor agonist, cell proliferation, and potential signaling cascades involved.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Tuder, R. M., Yun, J. H., Bhunia, A., & Fijalkowska, I. (2007). Hypoxia and chronic lung disease. Journal of Molecular Medicine (Berlin), 85, 1317–1324.

    Article  Google Scholar 

  2. Mathew, R. (2010). Inflammation and pulmonary hypertension. Cardiology in Review, 18, 67–72.

    Article  PubMed  Google Scholar 

  3. Voelkel, N. F., Mizuno, S., & Bogaard, H. J. (2013). The role of hypoxia in pulmonary vascular diseases: A perspective. American Journal of Physiology. Lung Cellular and Molecular Physiology, 304, L457–L465.

    Article  CAS  PubMed  Google Scholar 

  4. Pugliese, S. C., Poth, J. M., Fini, M. A., Olschewski, A., El Kasmi, K. C., & Stenmark, K. R. (2015). The role of inflammation in hypoxic pulmonary hypertension: From cellular mechanisms to clinical phenotypes. American Journal of Physiology. Lung Cellular and Molecular Physiology, 308, L229–L252.

    Article  CAS  PubMed  Google Scholar 

  5. Kylhammar, D., & Radegran, G. (2017). The principal pathways involved in the in vivo modulation of hypoxic pulmonary vasoconstriction, pulmonary arterial remodelling and pulmonary hypertension. Acta Physiologica (Oxford, England), 219(4), 728–756.

    Article  CAS  Google Scholar 

  6. Hassoun, P. M., Mouthon, L., Barberà, J. A., Eddahibi, S., Flores, S. C., Grimminger, F., et al. (2009). Inflammation, growth factors, and pulmonary vascular remodeling. Journal of the American College of Cardiology, 54, S10–S19.

    Article  CAS  PubMed  Google Scholar 

  7. Pasipoularides, A. (2016). Calcific aortic valve disease: Part 1—Molecular pathogenetic aspects, hemodynamics, and adaptive feedbacks. Journal of Cardiovascular Translational Research, 9, 102–118.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Weiss, R. M., Miller, J. D., & Heistad, D. D. (2013). Fibrocalcific aortic valve disease: Opportunity to understand disease mechanisms using mouse models. Circulation Research, 113, 209–222.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Stenmark, K. R., & McMurtry, I. F. (2005). Vascular remodeling versus vasoconstriction in chronic hypoxic pulmonary hypertension: A time for reappraisal? Circulation Research, 97, 95–98.

    Article  CAS  PubMed  Google Scholar 

  10. Tuder, R. M., Archer, S. L., Dorfmuller, P., Erzurum, S. C., Guignabert, C., Michelakis, E., et al. (2013). Relevant issues in the pathology and pathobiology of pulmonary hypertension. Journal of the American College of Cardiology, 62, D4–12.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Miller, J. D., Weiss, R. M., & Heistad, D. D. (2011). Calcific aortic valve stenosis: Methods, models, and mechanisms. Circulation Research, 108, 1392–1412.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Miller, J. D., Weiss, R. M., Serrano, K. M., Castaneda, L. E., Brooks, R. M., Zimmerman, K., et al. (2010). Evidence for active regulation of pro-osteogenic signaling in advanced aortic valve disease. Arteriosclerosis, Thrombosis, and Vascular Biology, 30, 2482–2486.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Stenmark, K. R., Fagan, K. A., & Frid, M. G. (2006). Hypoxia-induced pulmonary vascular remodeling: Cellular and molecular mechanisms. Circulation Research, 99, 675–691.

    Article  CAS  PubMed  Google Scholar 

  14. Voelkel, N. F., & Tuder, R. M. (2000). Hypoxia-induced pulmonary vascular remodeling: A model for what human disease? The Journal of Clinical Investigation, 106, 733–738.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Christou, H., Morita, T., Hsieh, C.-M., Koike, H., Arkonac, B., Perrella, M. A., et al. (2000). Prevention of hypoxia-induced pulmonary hypertension by enhancement of endogenous heme oxygenase-1 in the rat. Circulation Research, 86, 1224–1229.

    Article  CAS  PubMed  Google Scholar 

  16. Higenbottam, T., & Cremona, G. (1993). Acute and chronic hypoxic pulmonary hypertension. The European Respiratory Journal, 6, 1207–1212.

    CAS  PubMed  Google Scholar 

  17. Dorfmüller, P., Perros, F., Balabanian, K., & Humbert, M. (2003). Inflammation in pulmonary arterial hypertension. The European Respiratory Journal, 22, 358–363.

    Article  PubMed  Google Scholar 

  18. Humbert, M., Monti, G., Brenot, F., Sitbon, O., Portier, A., Grangeot-Keros, L., et al. (1995). Increased interleukin-1 and interleukin-6 serum concentrations in severe primary pulmonary hypertension. American Journal of Respiratory and Critical Care Medicine, 151, 1628–1631.

    Article  CAS  PubMed  Google Scholar 

  19. Tuder, R. M., & Voelkel, N. F. (1998). Pulmonary hypertension and inflammation. The Journal of Laboratory and Clinical Medicine, 132, 16–24.

    Article  CAS  PubMed  Google Scholar 

  20. Elson, D. A., Thurston, G., Huang, L. E., Ginzinger, D. G., McDonald, D. M., Johnson, R. S., et al. (2001). Induction of hypervascularity without leakage or inflammation in transgenic mice overexpressing hypoxia-inducible factor-1alpha. Genes & Development, 15, 2520–2532.

    Article  CAS  Google Scholar 

  21. Stenmark, K. R., Tuder, R. M., & El Kasmi, K. C. (2015). Metabolic reprogramming and inflammation act in concert to control vascular remodeling in hypoxic pulmonary hypertension. Journal of Applied Physiology (1985), 119, 1164–1172.

    Article  CAS  Google Scholar 

  22. Bärtsch, P., & Gibbs, J. S. R. (2007). Effect of altitude on the heart and the lungs. Circulation, 116, 2191–2202.

    Article  PubMed  Google Scholar 

  23. Eldridge, M. W., Braun, R. K., Yoneda, K. Y., & Walby, W. F. (2006). Effects of altitude and exercise on pulmonary capillary integrity: Evidence for subclinical high-altitude pulmonary edema. Journal of Applied Physiology (1985), 100, 972–980.

    Article  Google Scholar 

  24. Anglesio, M. S., George, J., Kulbe, H., Friedlander, M., Rischin, D., Lemech, C., et al. (2011). IL6-STAT3-HIF signaling and therapeutic response to the angiogenesis inhibitor sunitinib in ovarian clear cell cancer. Clinical Cancer Research, 17, 2538–2548.

    Article  CAS  PubMed  Google Scholar 

  25. Yokoe, T., Minoguchi, K., Matsuo, H., Oda, N., Minoguchi, H., Yoshino, G., et al. (2003). Elevated levels of C-reactive protein and interleukin-6 in patients with obstructive sleep apnea syndrome are decreased by nasal continuous positive airway pressure. Circulation, 107, 1129–1134.

    Article  CAS  PubMed  Google Scholar 

  26. Hartmann, G., Tschöp, M., Fischer, R., Bidlingmaier, C., Riepl, R., Tschöp, K., et al. (2000). High altitude increases circulating interleukin-6, interleukin-1 receptor antagonist and C-reactive protein. Cytokine, 12, 246–252.

    Article  CAS  PubMed  Google Scholar 

  27. Steiner, M. K., Syrkina, O. L., Kolliputi, N., Mark, E. J., Hales, C. A., & Waxman, A. B. (2009). Interleukin-6 overexpression induces pulmonary hypertension. Circulation Research, 104, 236–244.

    Article  CAS  PubMed  Google Scholar 

  28. Sanchez, O., Sitbon, O., Jaïs, X., Simonneau, G., & Humbert, M. (2006). Immunosuppressive therapy in connective tissue diseases-associated pulmonary arterial hypertension. Chest, 130, 182–189.

    Article  CAS  PubMed  Google Scholar 

  29. Davie, N. J., Crossno, J. T., Frid, M. G., Hofmeister, S. E., Reeves, J. T., Hyde, D. M., et al. (2004). Hypoxia-induced pulmonary artery adventitial remodeling and neovascularization: Contribution of progenitor cells. American Journal of Physiology. Lung Cellular and Molecular Physiology, 286, L668–L678.

    Article  CAS  PubMed  Google Scholar 

  30. Barbacid, M. (1995). Neurotrophic factors and their receptors. Current Opinion in Cell Biology, 7, 148–155.

    Article  CAS  PubMed  Google Scholar 

  31. Chao, M. V., Rajagopal, R., & Lee, F. S. (2006). Neurotrophin signalling in health and disease. Clinical Science (London, England), 110, 167–173.

    Article  CAS  Google Scholar 

  32. Blum, R., & Konnerth, A. (2005). Neurotrophin-mediated rapid signaling in the central nervous system: Mechanisms and functions. Physiology (Bethesda), 20, 70–78.

    Article  CAS  Google Scholar 

  33. Ip, N. Y., & Yancopoulos, G. D. (1994). Neurotrophic factors and their receptors. Annals of Neurology, 35(Suppl), S13–S16.

    Article  CAS  PubMed  Google Scholar 

  34. Caporali, A., & Emanueli, C. (2009). Cardiovascular actions of neurotrophins. Physiological Reviews, 89, 279–308.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Kraemer, R., & Hempstead, B. L. (2003). Neurotrophins: Novel mediators of angiogenesis. Frontiers in Bioscience, 8, s1181–s1186.

    Article  CAS  PubMed  Google Scholar 

  36. Hoyle, G. W. (2003). Neurotrophins and lung disease. Cytokine & Growth Factor Reviews, 14, 551–558.

    Article  CAS  Google Scholar 

  37. Prakash, Y. S., & Martin, R. J. (2014). Brain-derived neurotrophic factor in the airways. Pharmacology & Therapeutics, 143, 74–86.

    Article  CAS  Google Scholar 

  38. Prakash, Y. S., Thompson, M. A., Meuchel, L., Pabelick, C. M., Mantilla, C. B., Zaidi, S., et al. (2010). Neurotrophins in lung health and disease. Expert Review of Respiratory Medicine, 4, 395–411.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Watanabe, T., Fajt, M. L., Trudeau, J. B., Voraphani, N., Hu, H., Zhou, X., et al. (2015). Brain-derived neurotrophic factor expression in asthma. Association with severity and type 2 inflammatory processes. American Journal of Respiratory Cell and Molecular Biology, 53, 844–852.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Sathish, V., Vanoosten, S. K., Miller, B. S., Aravamudan, B., Thompson, M. A., Pabelick, C. M., et al. (2013). Brain-derived neurotrophic factor in cigarette smoke-induced airway hyperreactivity. American Journal of Respiratory Cell and Molecular Biology, 48, 431–438.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Aravamudan, B., Thompson, M. A., Pabelick, C. M., & Prakash, Y. S. (2016). Mechanisms of BDNF regulation in asthmatic airway smooth muscle. American Journal of Physiology. Lung Cellular and Molecular Physiology, 311, L270–L279.

    PubMed  PubMed Central  Google Scholar 

  42. Vohra, P. K., Thompson, M. A., Sathish, V., Kiel, A., Jerde, C., Pabelick, C. M., et al. (1833). TRPC3 regulates release of brain-derived neurotrophic factor from human airway smooth muscle. Biochimica et Biophysica Acta, 2013, 2953–2960.

    Google Scholar 

  43. Prakash, Y. S., Thompson, M. A., & Pabelick, C. M. (2009). Brain-derived neurotrophic factor in TNF-alpha modulation of Ca2+ in human airway smooth muscle. American Journal of Respiratory Cell and Molecular Biology, 41, 603–611.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Meuchel, L. W., Stewart, A., Smelter, D. F., Abcejo, A. J., Thompson, M. A., Zaidi, S. I., et al. (2011). Neurokinin-neurotrophin interactions in airway smooth muscle. American Journal of Physiology. Lung Cellular and Molecular Physiology, 301, L91–L98.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Prakash, Y. S., Iyanoye, A., Ay, B., Mantilla, C. B., & Pabelick, C. M. (2006). Neurotrophin effects on intracellular Ca2+ and force in airway smooth muscle. American Journal of Physiology. Lung Cellular and Molecular Physiology, 291, L447–L456.

    Article  CAS  PubMed  Google Scholar 

  46. Aravamudan, B., Thompson, M., Pabelick, C., & Prakash, Y. S. (2012). Brain derived neurotrophic factor induces proliferation of human airway smooth muscle cells. Journal of Cellular and Molecular Medicine, 16(4), 812–823.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Wang, S., Sathish, V., Freeman, M., Thompson, M., Pabelick, C. M., & Prakash, Y. S. (2016). Secreted brain-derived neurotrophic factor and asthma severity. American Journal of Respiratory Cell and Molecular Biology, 54, 297.

    Article  PubMed  PubMed Central  Google Scholar 

  48. Wang, S. Y., Freeman, M. R., Sathish, V., Thompson, M. A., Pabelick, C. M., & Prakash, Y. S. (2016). Sex steroids influence brain-derived neurotropic factor secretion from human airway smooth muscle cells. Journal of Cellular Physiology, 231, 1586–1592.

    Article  CAS  PubMed  Google Scholar 

  49. Xu, M., Remillard, C. V., Sachs, B. D., Makino, A., Platoshyn, O., Yao, W., et al. (2008). p75 neurotrophin receptor regulates agonist-induced pulmonary vasoconstriction. American Journal of Physiology. Heart and Circulatory Physiology, 295, H1529–H1538.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Ricci, A., Greco, S., Amenta, F., Bronzetti, E., Felici, L., Rossodivita, I., et al. (2000). Neurotrophins and neurotrophin receptors in human pulmonary arteries. Journal of Vascular Research, 37, 355–363.

    Article  CAS  PubMed  Google Scholar 

  51. Meuchel, L. W., Thompson, M. A., Cassivi, S. D., Pabelick, C. M., & Prakash, Y. S. (2011). Neurotrophins induce nitric oxide generation in human pulmonary artery endothelial cells. Cardiovascular Research, 91, 668–676.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Helan, M., Aravamudan, B., Hartman, W. R., Thompson, M. A., Johnson, B. D., Pabelick, C. M., et al. (2014). BDNF secretion by human pulmonary artery endothelial cells in response to hypoxia. Journal of Molecular and Cellular Cardiology, 68, 89–97.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Kim, H., Li, Q., Hempstead, B. L., & Madri, J. A. (2004). Paracrine and autocrine functions of brain-derived neurotrophic factor (BDNF) and nerve growth factor (NGF) in brain-derived endothelial cells. The Journal of Biological Chemistry, 279, 33538–33546.

    Article  CAS  PubMed  Google Scholar 

  54. Wang, H., Yuan, G., Prabhakar, N. R., Boswell, M., & Katz, D. M. (2006). Secretion of brain-derived neurotrophic factor from PC12 cells in response to oxidative stress requires autocrine dopamine signaling. Journal of Neurochemistry, 96, 694–705.

    Article  CAS  PubMed  Google Scholar 

  55. Nakamura, K., Martin, K. C., Jackson, J. K., Beppu, K., Woo, C.-W., & Thiele, C. J. (2006). Brain-derived neurotrophic factor activation of TrkB induces vascular endothelial growth factor expression via hypoxia-inducible factor-1α in neuroblastoma cells. Cancer Research, 66, 4249–4255.

    Article  CAS  PubMed  Google Scholar 

  56. Rey, S., & Semenza, G. L. (2010). Hypoxia-inducible factor-1-dependent mechanisms of vascularization and vascular remodelling. Cardiovascular Research, 86, 236–242.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Shimoda, L. A., & Semenza, G. L. (2011). HIF and the lung. American Journal of Respiratory and Critical Care Medicine, 183, 152–156.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Martens, L. K., Kirschner, K. M., Warnecke, C., & Scholz, H. (2007). Hypoxia-inducible factor-1 (HIF-1) is a transcriptional activator of the TrkB neurotrophin receptor gene. The Journal of Biological Chemistry, 282, 14379–14388.

    Article  CAS  PubMed  Google Scholar 

  59. Hartman, W., Helan, M., Smelter, D., Sathish, V., Thompson, M., Pabelick, C. M., et al. (2015). Role of hypoxia-induced brain derived neurotrophic factor in human pulmonary artery smooth muscle. PloS One, 10, e0129489.

    Article  PubMed  PubMed Central  Google Scholar 

  60. Levin, S. D., Koelling, R. M., Friend, S. L., Isaksen, D. E., Ziegler, S. F., Perlmutter, R. M., et al. (1999). Thymic stromal lymphopoietin: A cytokine that promotes the development of IgM+ B cells in vitro and signals via a novel mechanism. Journal of Immunology, 162, 677–683.

    CAS  Google Scholar 

  61. Soumelis, V., Reche, P. A., Kanzler, H., Yuan, W., Edward, G., Homey, B., et al. (2002). Human epithelial cells trigger dendritic cell mediated allergic inflammation by producing TSLP. Nature Immunology, 3, 673–680.

    CAS  PubMed  Google Scholar 

  62. Lee, E. B., Kim, K. W., Hong, J. Y., Jee, H. M., Sohn, M. H., & Kim, K. E. (2010). Increased serum thymic stromal lymphopoietin in children with atopic dermatitis. Pediatric Allergy and Immunology, 21, e457–e460.

    Article  PubMed  Google Scholar 

  63. Gilliet, M., Soumelis, V., Watanabe, N., Hanabuchi, S., Antonenko, S., de Waal-Malefyt, R., et al. (2003). Human dendritic cells activated by TSLP and CD40L induce proallergic cytotoxic T cells. The Journal of Experimental Medicine, 197, 1059–1063.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Smelter, D. F., Sathish, V., Thompson, M. A., Pabelick, C. M., Vassallo, R., & Prakash, Y. S. (2010). Thymic stromal lymphopoietin in cigarette smoke-exposed human airway smooth muscle. Journal of Immunology, 185, 3035–3040.

    Article  CAS  Google Scholar 

  65. Cianferoni, A., & Spergel, J. (2014). The importance of TSLP in allergic disease and its role as a potential therapeutic target. Expert Review of Clinical Immunology, 10, 1463–1474.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Ziegler, S. F., Roan, F., Bell, B. D., Stoklasek, T. A., Kitajima, M., & Han, H. (2013). The biology of thymic stromal lymphopoietin (TSLP). Advances in Pharmacology, 66, 129–155.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Wohlmann, A., Sebastian, K., Borowski, A., Krause, S., & Friedrich, K. (2010). Signal transduction by the atopy-associated human thymic stromal lymphopoietin (TSLP) receptor depends on Janus kinase function. Biological Chemistry, 391, 181–186.

    Article  CAS  PubMed  Google Scholar 

  68. Ying, S., O’Connor, B., Ratoff, J., Meng, Q., Mallett, K., Cousins, D., et al. (2005). Thymic stromal lymphopoietin expression is increased in asthmatic airways and correlates with expression of Th2-attracting chemokines and disease severity. Journal of Immunology, 174, 8183–8190.

    Article  CAS  Google Scholar 

  69. Zhou, B., Comeau, M. R., De Smedt, T., Liggitt, H. D., Dahl, M. E., Lewis, D. B., et al. (2005). Thymic stromal lymphopoietin as a key initiator of allergic airway inflammation in mice. Nature Immunology, 6, 1047–1053.

    Article  CAS  PubMed  Google Scholar 

  70. Hener, P., Friedmann, L., Metzger, D., Chambon, P., & Li, M. (2011). Aggravated TSLP-induced atopic dermatitis in mice lacking dicer in adult skin keratinocytes. The Journal of Investigative Dermatology, 131, 2324–2327.

    Article  CAS  PubMed  Google Scholar 

  71. Comeau, M. R., & Ziegler, S. F. (2010). The influence of TSLP on the allergic response. Mucosal Immunology, 3, 138–147.

    Article  CAS  PubMed  Google Scholar 

  72. Miazgowicz, M. M., Headley, M. B., Larson, R. P., & Ziegler, S. F. (2009). Thymic stromal lymphopoietin and the pathophysiology of atopic disease. Expert Review of Clinical Immunology, 5, 547–556.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Roan, F., Bell, B. D., Stoklasek, T. A., Kitajima, M., Han, H., & Ziegler, S. F. (2012). The multiple facets of thymic stromal lymphopoietin (TSLP) during allergic inflammation and beyond. Journal of Leukocyte Biology, 91, 877–886.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Ziegler, S. F., & Liu, Y. J. (2006). Thymic stromal lymphopoietin in normal and pathogenic T cell development and function. Nature Immunology, 7, 709–714.

    Article  CAS  PubMed  Google Scholar 

  75. Kitajima, M., Lee, H. C., Nakayama, T., & Ziegler, S. F. (2011). TSLP enhances the function of helper type 2 cells. European Journal of Immunology, 41, 1862–1871.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Kitajima, M., & Ziegler, S. F. (2013). Cutting edge: Identification of the thymic stromal lymphopoietin-responsive dendritic cell subset critical for initiation of type 2 contact hypersensitivity. Journal of Immunology, 191, 4903–4907.

    Article  CAS  Google Scholar 

  77. Nagata, Y., Kamijuku, H., Taniguchi, M., Ziegler, S., & Seino, K. (2007). Differential role of thymic stromal lymphopoietin in the induction of airway hyperreactivity and Th2 immune response in antigen-induced asthma with respect to natural killer T cell function. International Archives of Allergy and Immunology, 144, 305–314.

    Article  CAS  PubMed  Google Scholar 

  78. Ziegler, S. F., & Artis, D. (2010). Sensing the outside world: TSLP regulates barrier immunity. Nature Immunology, 11, 289–293.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Simeone-Penney, M. C., Severgnini, M., Rozo, L., Takahashi, S., Cochran, B. H., & Simon, A. R. (2008). PDGF-induced human airway smooth muscle cell proliferation requires STAT3 and the small GTPase Rac1. American Journal of Physiology. Lung Cellular and Molecular Physiology, 294, L698–L704.

    Article  CAS  PubMed  Google Scholar 

  80. Quentmeier, H., Drexler, H. G., Fleckenstein, D., Zaborski, M., Armstrong, A., Sims, J. E., et al. (2001). Cloning of human thymic stromal lymphopoietin (TSLP) and signaling mechanisms leading to proliferation. Leukemia, 15, 1286–1292.

    Article  CAS  PubMed  Google Scholar 

  81. Redhu, N. S., Saleh, A., Halayko, A. J., Ali, A. S., & Gounni, A. S. (2011). Essential role of NF-κB and AP-1 transcription factors in TNF-α-induced TSLP expression in human airway smooth muscle cells. American Journal of Physiology. Lung Cellular and Molecular Physiology, 300, L479–L485.

    Article  CAS  PubMed  Google Scholar 

  82. Datta, A., Alexander, R., Sulikowski, M. G., Nicholson, A. G., Maher, T. M., Scotton, C. J., et al. (2013). Evidence for a functional thymic stromal lymphopoietin signaling axis in fibrotic lung disease. Journal of Immunology, 191, 4867–4879.

    Article  CAS  Google Scholar 

  83. Yu, K., Zhu, P., Dong, Q., Zhong, Y., Zhu, Z., Lin, Y., et al. (2013). Thymic stromal lymphopoietin attenuates the development of atherosclerosis in ApoE−/− mice. Journal of the American Heart Association, 2, e000391.

    Article  PubMed  PubMed Central  Google Scholar 

  84. Wu, C., He, S., Peng, Y., Kushwaha, K. K., Lin, J., Dong, J., et al. (2014). TSLPR deficiency attenuates atherosclerotic lesion development associated with the inhibition of TH17 cells and the promotion of regulator T cells in ApoE-deficient mice. Journal of Molecular and Cellular Cardiology, 76, 33–45.

    Article  CAS  PubMed  Google Scholar 

  85. Dong, J., Lin, J., Wang, B., He, S., Wu, C., Kushwaha, K. K., et al. (2015). Inflammatory cytokine TSLP stimulates platelet secretion and potentiates platelet aggregation via a TSLPR-dependent PI3K/Akt signaling pathway. Cellular Physiology and Biochemistry, 35, 160–174.

    Article  CAS  PubMed  Google Scholar 

  86. Truchetet, M. E., Demoures, B., Eduardo Guimaraes, J., Bertrand, A., Laurent, P., Jolivel, V., et al. (2016). Platelets induce thymic stromal lymphopoietin production by endothelial cells: Contribution to fibrosis in human systemic sclerosis. Arthritis & Rhematology, 68, 2784–2794.

    Article  CAS  Google Scholar 

  87. Lin, J., Chang, W., Dong, J., Zhang, F., Mohabeer, N., Kushwaha, K. K., et al. (2013). Thymic stromal lymphopoietin over-expressed in human atherosclerosis: Potential role in Th17 differentiation. Cellular Physiology and Biochemistry, 31, 305–318.

    Article  CAS  PubMed  Google Scholar 

  88. Courboulin, A., Paulin, R., Giguere, N. J., Saksouk, N., Perreault, T., Meloche, J., et al. (2011). Role for miR-204 in human pulmonary arterial hypertension. The Journal of Experimental Medicine, 208, 535–548.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Abcejo, A., Venkatachalem, S., Aravamudan, B., Meuchel, L., Thompson, M., Pabelick, C., et al. (2012). Brain-derived neurotrophic factor enhances calcium regulatory mechanisms in human airway smooth muscle. PLoS One, 7(8), e44343.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Li, M., Liu, Y., Dutt, P., Fanburg, B. L., & Toksoz, D. (2007). Inhibition of serotonin-induced mitogenesis, migration, and ERK MAPK nuclear translocation in vascular smooth muscle cells by atorvastatin. American Journal of Physiology. Lung Cellular and Molecular Physiology, 293, L463–L471.

    Article  CAS  PubMed  Google Scholar 

  91. BelAiba, R. S., Bonello, S., Zähringer, C., Schmidt, S., Hess, J., Kietzmann, T., et al. (2007). Hypoxia up-regulates hypoxia-inducible factor-1α transcription by involving phosphatidylinositol 3-kinase and nuclear factor κB in pulmonary artery smooth muscle cells. Molecular Biology of the Cell, 18, 4691–4697.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Y. S. Prakash M.D., Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Thompson, M., Britt, R.D., Pabelick, C.M., Prakash, Y.S. (2017). Hypoxia and Local Inflammation in Pulmonary Artery Structure and Function. In: Wang, YX. (eds) Pulmonary Vasculature Redox Signaling in Health and Disease. Advances in Experimental Medicine and Biology, vol 967. Springer, Cham. https://doi.org/10.1007/978-3-319-63245-2_20

Download citation

Publish with us

Policies and ethics