Skip to main content

Endothelial Cell Reactive Oxygen Species and Ca2+ Signaling in Pulmonary Hypertension

  • Chapter
  • First Online:
Pulmonary Vasculature Redox Signaling in Health and Disease

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 967))

Abstract

Pulmonary hypertension (PH) refers to a disorder characterized by elevated pulmonary arterial pressure, leading to right ventricular overload and eventually right ventricular failure, which results in high morbidity and mortality. PH is associated with heterogeneous etiologies and distinct molecular mechanisms, including abnormal migration and proliferation of endothelial and smooth muscle cells. Although the exact details are not fully elucidated, reactive oxygen species (ROS) have been shown to play a key role in promoting abnormal function in pulmonary arterial smooth muscle and endothelial cells in PH. In endothelial cells, ROS can be generated from sources such as NADPH oxidase and mitochondria, which in turn can serve as signaling molecules in a wide variety of processes including posttranslational modification of proteins involved in Ca2+ homeostasis. In this chapter, we discuss the role of ROS in promoting abnormal vasoreactivity and endothelial migration and proliferation in various models of PH. Furthermore, we draw particular attention to the role of ROS-induced increases in intracellular Ca2+ concentration in the pathobiology of PH.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Aggarwal, S., Gross, C. M., Sharma, S., Fineman, J. R., & Black, S. M. (2013). Reactive oxygen species in pulmonary vascular remodeling. Comprehensive Physiology, 3, 1011–1034.

    PubMed  PubMed Central  Google Scholar 

  2. Damico, R., Zulueta, J. J., & Hassoun, P. M. (2012). Pulmonary endothelial cell NOX. American Journal of Respiratory Cell and Molecular Biology, 47, 129–139.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Touyz, R. M. (2005). Reactive oxygen species as mediators of calcium signaling by angiotensin II: Implications in vascular physiology and pathophysiology. Antioxidants & Redox Signaling, 7, 1302–1314.

    Article  CAS  Google Scholar 

  4. Gebb, S., & Stevens, T. (2004). On lung endothelial cell heterogeneity. Microvascular Research, 68, 1–12.

    Article  CAS  PubMed  Google Scholar 

  5. Drake, K. M., Comhair, S. A., Erzurum, S. C., Tuder, R. M., & Aldred, M. A. (2015). Endothelial chromosome 13 deletion in congenital heart disease-associated pulmonary arterial hypertension dysregulates SMAD9 signaling. American Journal of Respiratory and Critical Care Medicine, 191, 850–854.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Duong, H. T., Comhair, S. A., Aldred, M. A., et al. (2011). Pulmonary artery endothelium resident endothelial colony-forming cells in pulmonary arterial hypertension. Pulmonary Circulation, 1, 475–486.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Stevens, T. (2011). Functional and molecular heterogeneity of pulmonary endothelial cells. Proceedings of the American Thoracic Society, 8, 453–457.

    Article  CAS  PubMed  Google Scholar 

  8. Galie, N., Humbert, M., Vachiery, J. L., et al. (2016). 2015 ESC/ERS Guidelines for the diagnosis and treatment of pulmonary hypertension: The Joint Task Force for the Diagnosis and Treatment of Pulmonary Hypertension of the European Society of Cardiology (ESC) and the European Respiratory Society (ERS): Endorsed by: Association for European Paediatric and Congenital Cardiology (AEPC), International Society for Heart and Lung Transplantation (ISHLT). European Heart Journal, 37, 67–119.

    Article  PubMed  Google Scholar 

  9. Wong, C. M., Bansal, G., Pavlickova, L., Marcocci, L., & Suzuki, Y. J. (2013). Reactive oxygen species and antioxidants in pulmonary hypertension. Antioxidants & Redox Signaling, 18, 1789–1796.

    Article  CAS  Google Scholar 

  10. Cracowski, J. L., Degano, B., Chabot, F., et al. (2012). Independent association of urinary F2-isoprostanes with survival in pulmonary arterial hypertension. Chest, 142, 869–876.

    Article  CAS  PubMed  Google Scholar 

  11. Irodova, N. L., Lankin, V. Z., Konovalova, G. K., Kochetov, A. G., & Chazova, I. E. (2002). Oxidative stress in patients with primary pulmonary hypertension. Bulletin of Experimental Biology and Medicine, 133, 580–582.

    Article  CAS  PubMed  Google Scholar 

  12. Bowers, R., Cool, C., Murphy, R. C., et al. (2004). Oxidative stress in severe pulmonary hypertension. American Journal of Respiratory and Critical Care Medicine, 169, 764–769.

    Article  PubMed  Google Scholar 

  13. Wanstall, J. C., Kaye, J. A., & Gambino, A. (1997). The in vitro pulmonary vascular effects of FK409 (nitric oxide donor): A study in normotensive and pulmonary hypertensive rats. British Journal of Pharmacology, 121, 280–286.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Jernigan, N. L., Walker, B. R., & Resta, T. C. (2004). Endothelium-derived reactive oxygen species and endothelin-1 attenuate NO-dependent pulmonary vasodilation following chronic hypoxia. American Journal of Physiology. Lung Cellular and Molecular Physiology, 287, L801–L808.

    Article  CAS  PubMed  Google Scholar 

  15. Murphy, M. P. (2009). How mitochondria produce reactive oxygen species. The Biochemical Journal, 417, 1–13.

    Article  CAS  PubMed  Google Scholar 

  16. Lassegue, B., & Clempus, R. E. (2003). Vascular NAD(P)H oxidases: Specific features, expression, and regulation. American Journal of Physiology Regulatory, Integrative and Comparative Physiology, 285, R277–R297.

    Article  CAS  PubMed  Google Scholar 

  17. Nauseef, W. M. (2008). Biological roles for the NOX family NADPH oxidases. The Journal of Biological Chemistry, 283, 16961–16965.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Drummond, G. R., & Sobey, C. G. (2014). Endothelial NADPH oxidases: Which NOX to target in vascular disease? Trends in Endocrinology and Metabolism: TEM, 25, 452–463.

    Article  CAS  PubMed  Google Scholar 

  19. Petry, A., Djordjevic, T., Weitnauer, M., Kietzmann, T., Hess, J., & Gorlach, A. (2006). NOX2 and NOX4 mediate proliferative response in endothelial cells. Antioxidants & Redox Signaling, 8, 1473–1484.

    Article  CAS  Google Scholar 

  20. Datla, S. R., Peshavariya, H., Dusting, G. J., Mahadev, K., Goldstein, B. J., & Jiang, F. (2007). Important role of Nox4 type NADPH oxidase in angiogenic responses in human microvascular endothelial cells in vitro. Arteriosclerosis, Thrombosis, and Vascular Biology, 27, 2319–2324.

    Article  CAS  PubMed  Google Scholar 

  21. Brennan, L. A., Steinhorn, R. H., Wedgwood, S., et al. (2003). Increased superoxide generation is associated with pulmonary hypertension in fetal lambs: A role for NADPH oxidase. Circulation Research, 92, 683–691.

    Article  CAS  PubMed  Google Scholar 

  22. Grobe, A. C., Wells, S. M., Benavidez, E., et al. (2006). Increased oxidative stress in lambs with increased pulmonary blood flow and pulmonary hypertension: Role of NADPH oxidase and endothelial NO synthase. American Journal of Physiology. Lung Cellular and Molecular Physiology, 290, L1069–L1077.

    Article  CAS  PubMed  Google Scholar 

  23. Nisbet, R. E., Graves, A. S., Kleinhenz, D. J., et al. (2009). The role of NADPH oxidase in chronic intermittent hypoxia-induced pulmonary hypertension in mice. American Journal of Respiratory Cell and Molecular Biology, 40, 601–609.

    Article  CAS  PubMed  Google Scholar 

  24. Dennis, K. E., Aschner, J. L., Milatovic, D., et al. (2009). NADPH oxidases and reactive oxygen species at different stages of chronic hypoxia-induced pulmonary hypertension in newborn piglets. American Journal of Physiology. Lung Cellular and Molecular Physiology, 297, L596–L607.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Liu, J. Q., Zelko, I. N., Erbynn, E. M., Sham, J. S., & Folz, R. J. (2006). Hypoxic pulmonary hypertension: Role of superoxide and NADPH oxidase (gp91phox). American Journal of Physiology. Lung Cellular and Molecular Physiology, 290, L2–10.

    Article  CAS  PubMed  Google Scholar 

  26. Fresquet, F., Pourageaud, F., Leblais, V., et al. (2006). Role of reactive oxygen species and gp91phox in endothelial dysfunction of pulmonary arteries induced by chronic hypoxia. British Journal of Pharmacology, 148, 714–723.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Dimmeler, S., & Zeiher, A. M. (2000). Reactive oxygen species and vascular cell apoptosis in response to angiotensin II and pro-atherosclerotic factors. Regulatory Peptides, 90, 19–25.

    Article  CAS  PubMed  Google Scholar 

  28. Ushio-Fukai, M. (2006). Redox signaling in angiogenesis: Role of NADPH oxidase. Cardiovascular Research, 71, 226–235.

    Article  CAS  PubMed  Google Scholar 

  29. Duerrschmidt, N., Stielow, C., Muller, G., Pagano, P. J., & Morawietz, H. (2006). NO-mediated regulation of NAD(P)H oxidase by laminar shear stress in human endothelial cells. The Journal of Physiology, 576, 557–567.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Schafer, M., Schafer, C., Ewald, N., Piper, H. M., & Noll, T. (2003). Role of redox signaling in the autonomous proliferative response of endothelial cells to hypoxia. Circulation Research, 92, 1010–1015.

    Article  CAS  PubMed  Google Scholar 

  31. Colavitti, R., Pani, G., Bedogni, B., et al. (2002). Reactive oxygen species as downstream mediators of angiogenic signaling by vascular endothelial growth factor receptor-2/KDR. The Journal of Biological Chemistry, 277, 3101–3108.

    Article  CAS  PubMed  Google Scholar 

  32. Ushio-Fukai, M. (2007). VEGF signaling through NADPH oxidase-derived ROS. Antioxidants & Redox Signaling, 9, 731–739.

    Article  CAS  Google Scholar 

  33. Marui, N., Offermann, M. K., Swerlick, R., et al. (1993). Vascular cell adhesion molecule-1 (VCAM-1) gene transcription and expression are regulated through an antioxidant-sensitive mechanism in human vascular endothelial cells. The Journal of Clinical Investigation, 92, 1866–1874.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Cook-Mills, J. M., Marchese, M. E., & Abdala-Valencia, H. (2011). Vascular cell adhesion molecule-1 expression and signaling during disease: Regulation by reactive oxygen species and antioxidants. Antioxidants & Redox Signaling, 15, 1607–1638.

    Article  CAS  Google Scholar 

  35. Moldovan, L., Moldovan, N. I., Sohn, R. H., Parikh, S. A., & Goldschmidt-Clermont, P. J. (2000). Redox changes of cultured endothelial cells and actin dynamics. Circulation Research, 86, 549–557.

    Article  CAS  PubMed  Google Scholar 

  36. van Wetering, S., van Buul, J. D., Quik, S., et al. (2002). Reactive oxygen species mediate Rac-induced loss of cell-cell adhesion in primary human endothelial cells. Journal of Cell Science, 115, 1837–1846.

    PubMed  Google Scholar 

  37. Wu, R. F., Xu, Y. C., Ma, Z., Nwariaku, F. E., Sarosi, G. A., Jr., & Terada, L. S. (2005). Subcellular targeting of oxidants during endothelial cell migration. The Journal of Cell Biology, 171, 893–904.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Wu, R. F., Gu, Y., Xu, Y. C., Nwariaku, F. E., & Terada, L. S. (2003). Vascular endothelial growth factor causes translocation of p47phox to membrane ruffles through WAVE1. The Journal of Biological Chemistry, 278, 36830–36840.

    Article  CAS  PubMed  Google Scholar 

  39. Wu, R. F., Ma, Z., Myers, D. P., & Terada, L. S. (2007). HIV-1 Tat activates dual Nox pathways leading to independent activation of ERK and JNK MAP kinases. The Journal of Biological Chemistry, 282, 37412–37419.

    Article  CAS  PubMed  Google Scholar 

  40. Zhang, D. X., & Gutterman, D. D. (2007). Mitochondrial reactive oxygen species-mediated signaling in endothelial cells. American Journal of Physiology. Heart and Circulatory Physiology, 292, H2023–H2031.

    Article  CAS  PubMed  Google Scholar 

  41. Li, X., Fang, P., Li, Y., et al. (2016). Mitochondrial reactive oxygen species mediate lysophosphatidylcholine-induced endothelial cell activation. Arteriosclerosis, Thrombosis, and Vascular Biology, 36, 1090–1100.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Archer, S. L., Huang, J., Henry, T., Peterson, D., & Weir, E. K. (1993). A redox-based O2 sensor in rat pulmonary vasculature. Circulation Research, 73, 1100–1112.

    Article  CAS  PubMed  Google Scholar 

  43. Dunham-Snary, K. J., Hong, Z. G., Xiong, P. Y., et al. (2016). A mitochondrial redox oxygen sensor in the pulmonary vasculature and ductus arteriosus. Pflugers Archiv: European Journal of Physiology, 468, 43–58.

    Article  CAS  PubMed  Google Scholar 

  44. Archer, S. L., Gomberg-Maitland, M., Maitland, M. L., Rich, S., Garcia, J. G., & Weir, E. K. (2008). Mitochondrial metabolism, redox signaling, and fusion: A mitochondria-ROS-HIF-1alpha-Kv1.5 O2-sensing pathway at the intersection of pulmonary hypertension and cancer. American Journal of Physiology. Heart and Circulatory Physiology, 294, H570–H578.

    Article  CAS  PubMed  Google Scholar 

  45. Waypa, G. B., & Schumacker, P. T. (2005). Hypoxic pulmonary vasoconstriction: Redox events in oxygen sensing. Journal of Applied Physiology (1985), 98, 404–414.

    Article  CAS  Google Scholar 

  46. Waypa, G. B., & Schumacker, P. T. (2010). Hypoxia-induced changes in pulmonary and systemic vascular resistance: Where is the O2 sensor? Respiratory Physiology & Neurobiology, 174, 201–211.

    Article  CAS  Google Scholar 

  47. Wolin, M. S., Ahmad, M., & Gupte, S. A. (2005). Oxidant and redox signaling in vascular oxygen sensing mechanisms: Basic concepts, current controversies, and potential importance of cytosolic NADPH. American Journal of Physiology. Lung Cellular and Molecular Physiology, 289, L159–L173.

    Article  CAS  PubMed  Google Scholar 

  48. Semenza, G. L. (2011). Oxygen sensing, homeostasis, and disease. The New England Journal of Medicine, 365, 537–547.

    Article  CAS  PubMed  Google Scholar 

  49. Pisarcik, S., Maylor, J., Lu, W., et al. (2013). Activation of hypoxia-inducible factor-1 in pulmonary arterial smooth muscle cells by endothelin-1. American Journal of Physiology. Lung Cellular and Molecular Physiology, 304, L549–L561.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Tuder, R. M., Davis, L. A., & Graham, B. B. (2012). Targeting energetic metabolism: A new frontier in the pathogenesis and treatment of pulmonary hypertension. American Journal of Respiratory and Critical Care Medicine, 185, 260–266.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Waypa, G. B., Smith, K. A., & Schumacker, P. T. (2016). O2 sensing, mitochondria and ROS signaling: The fog is lifting. Molecular Aspects of Medicine, 47–48, 76–89.

    Article  PubMed  CAS  Google Scholar 

  52. Sabharwal, S. S., Waypa, G. B., Marks, J. D., & Schumacker, P. T. (2013). Peroxiredoxin-5 targeted to the mitochondrial intermembrane space attenuates hypoxia-induced reactive oxygen species signalling. The Biochemical Journal, 456, 337–346.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Ryan, J. M. (1979). Effect of different fetal bovine serum concentrations on the replicative life span of cultured chick cells. In Vitro, 15, 895–899.

    Article  CAS  PubMed  Google Scholar 

  54. Yu, A. Y., Frid, M. G., Shimoda, L. A., Wiener, C. M., Stenmark, K., & Semenza, G. L. (1998). Temporal, spatial, and oxygen-regulated expression of hypoxia-inducible factor-1 in the lung. The American Journal of Physiology, 275, L818–L826.

    CAS  PubMed  Google Scholar 

  55. Tuder, R. M., Chacon, M., Alger, L., et al. (2001). Expression of angiogenesis-related molecules in plexiform lesions in severe pulmonary hypertension: Evidence for a process of disordered angiogenesis. The Journal of Pathology, 195, 367–374.

    Article  CAS  PubMed  Google Scholar 

  56. Xu, W., Koeck, T., Lara, A. R., et al. (2007). Alterations of cellular bioenergetics in pulmonary artery endothelial cells. Proceedings of the National Academy of Sciences of the United States of America, 104, 1342–1347.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Quintero, M., Colombo, S. L., Godfrey, A., & Moncada, S. (2006). Mitochondria as signaling organelles in the vascular endothelium. Proceedings of the National Academy of Sciences of the United States of America, 103, 5379–5384.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Wright, G. L., Maroulakou, I. G., Eldridge, J., et al. (2008). VEGF stimulation of mitochondrial biogenesis: Requirement of AKT3 kinase. FASEB Journal, 22, 3264–3275.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Chen, K., Thomas, S. R., Albano, A., Murphy, M. P., & Keaney, J. F., Jr. (2004). Mitochondrial function is required for hydrogen peroxide-induced growth factor receptor transactivation and downstream signaling. The Journal of Biological Chemistry, 279, 35079–35086.

    Article  CAS  PubMed  Google Scholar 

  60. Birukov, K. G. (2009). Cyclic stretch, reactive oxygen species, and vascular remodeling. Antioxidants & Redox Signaling, 11, 1651–1667.

    Article  CAS  Google Scholar 

  61. Wedgwood, S., Lakshminrusimha, S., Schumacker, P. T., & Steinhorn, R. H. (2015). Hypoxia inducible factor signaling and experimental persistent pulmonary hypertension of the newborn. Frontiers in Pharmacology, 6, 47.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  62. Farrow, K. N., Wedgwood, S., Lee, K. J., et al. (2010). Mitochondrial oxidant stress increases PDE5 activity in persistent pulmonary hypertension of the newborn. Respiratory Physiology & Neurobiology, 174, 272–281.

    Article  CAS  Google Scholar 

  63. Ali, M. H., Pearlstein, D. P., Mathieu, C. E., & Schumacker, P. T. (2004). Mitochondrial requirement for endothelial responses to cyclic strain: Implications for mechanotransduction. American Journal of Physiology. Lung Cellular and Molecular Physiology, 287, L486–L496.

    Article  CAS  PubMed  Google Scholar 

  64. Li, Q., Mao, M., Qiu, Y., et al. (2016). Key role of ROS in the process of 15-lipoxygenase/15-hydroxyeicosatetraenoiccid-induced pulmonary vascular remodeling in hypoxia pulmonary hypertension. PloS One, 11, e0149164.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  65. Wang, Y., Zang, Q. S., Liu, Z., et al. (2011). Regulation of VEGF-induced endothelial cell migration by mitochondrial reactive oxygen species. American Journal of Physiology. Cell Physiology, 301, C695–C704.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Liu, Y., Zhao, H., Li, H., Kalyanaraman, B., Nicolosi, A. C., & Gutterman, D. D. (2003). Mitochondrial sources of H2O2 generation play a key role in flow-mediated dilation in human coronary resistance arteries. Circulation Research, 93, 573–580.

    Article  CAS  PubMed  Google Scholar 

  67. Cioffi, D. L., Wu, S., & Stevens, T. (2003). On the endothelial cell I(SOC). Cell Calcium, 33, 323.

    Article  CAS  PubMed  Google Scholar 

  68. Shimoda, L. A., Wang, J., & Sylvester, J. T. (2006). Ca2+ channels and chronic hypoxia. Microcirculation, 13, 657–670.

    Article  CAS  PubMed  Google Scholar 

  69. Ying, X., Minamiya, Y., Fu, C., & Bhattacharya, J. (1996). Ca2+ waves in lung capillary endothelium. Circulation Research, 79, 898.

    Article  CAS  PubMed  Google Scholar 

  70. Tiruppathi, C., Minshall, R. D., Paria, B. C., Vogel, S. M., & Malik, A. B. (2002). Role of Ca2+ signaling in the regulation of endothelial permeability. Vascular Pharmacology, 39, 173–185.

    Article  CAS  PubMed  Google Scholar 

  71. Yao, W., Mu, W., Zeifman, A., et al. (2011). Fenfluramine-induced gene dysregulation in human pulmonary artery smooth muscle and endothelial cells. Pulmonary Circulation, 1, 405–418.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Hampl, V., Cornfield, D. N., Cowan, N. J., & Archer, S. L. (1995). Hypoxia potentiates nitric oxide synthesis and transiently increases cytosolic calcium levels in pulmonary artery endothelial cells. The European Respiratory Journal, 8, 515–522.

    CAS  PubMed  Google Scholar 

  73. Fantozzi, I., Zhang, S., Platoshyn, O., Remillard, C. V., Cowling, R. T., & Yuan, J. X. (2003). Hypoxia increases AP-1 binding activity by enhancing capacitative Ca2+ entry in human pulmonary artery endothelial cells. American Journal of Physiology. Lung Cellular and Molecular Physiology, 285, L1233–L1245.

    Article  CAS  PubMed  Google Scholar 

  74. Cioffi, D. L., Lowe, K., Alvarez, D. F., Barry, C., & Stevens, T. (2009). TRPing on the lung endothelium: Calcium channels that regulate barrier function. Antioxidants & Redox Signaling, 11, 765.

    Article  CAS  Google Scholar 

  75. Townsley, M. I., King, J. A., & Alvarez, D. F. (2006). Ca2+ channels and pulmonary endothelial permeability: Insights from study of intact lung and chronic pulmonary hypertension. Microcirculation, 13, 725–739.

    Article  CAS  PubMed  Google Scholar 

  76. Lowe, K., Alvarez, D., King, J., & Stevens, T. (2007). Phenotypic heterogeneity in lung capillary and extra-alveolar endothelial cells. Increased extra-alveolar endothelial permeability is sufficient to decrease compliance. The Journal of Surgical Research, 143, 70–77.

    Article  CAS  PubMed  Google Scholar 

  77. Alvarez, D. F., King, J. A., Weber, D., Addison, E., Liedtke, W., & Townsley, M. I. (2006). Transient receptor potential vanilloid 4-mediated disruption of the alveolar septal barrier: A novel mechanism of acute lung injury. Circulation Research, 99, 988.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Francis, M., Xu, N., Zhou, C., & Stevens, T. (2016). Transient receptor potential channel 4 encodes a vascular permeability defect and high-frequency Ca(2+) transients in severe pulmonary arterial hypertension. The American Journal of Pathology, 186, 1701–1709.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Zhou, C., Townsley, M. I., Alexeyev, M., Voelkel, N. F., & Stevens, T. (2016). Endothelial hyperpermeability in severe pulmonary arterial hypertension: Role of store operated calcium entry. American Journal of Physiology. Lung Cellular and Molecular Physiology, 311(3), L560–L569. doi:10.1152/ajplung.00057.2016.

    Article  PubMed  PubMed Central  Google Scholar 

  80. Alzoubi, A., Almalouf, P., Toba, M., et al. (2013). TRPC4 inactivation confers a survival benefit in severe pulmonary arterial hypertension. The American Journal of Pathology, 183, 1779–1788.

    Article  CAS  PubMed  Google Scholar 

  81. Bogeski, I., Kappl, R., Kummerow, C., Gulaboski, R., Hoth, M., & Niemeyer, B. A. (2011). Redox regulation of calcium ion channels: Chemical and physiological aspects. Cell Calcium, 50, 407.

    Article  CAS  PubMed  Google Scholar 

  82. Brini, M., Cali, T., Ottolini, D., & Carafoli, E. (2012). Calcium pumps: Why so many? Comprehensive Physiology, 2, 1045–1060.

    PubMed  Google Scholar 

  83. Parekh, A. B., & Putney, J. W., Jr. (2005). Store-operated calcium channels. Physiological Reviews, 85, 757.

    Article  CAS  PubMed  Google Scholar 

  84. Chuang, H. H., & Lin, S. (2009). Oxidative challenges sensitize the capsaicin receptor by covalent cysteine modification. Proceedings of the National Academy of Sciences of the United States of America, 106, 20097–20102.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Macpherson, L. J., Xiao, B., Kwan, K. Y., et al. (2007). An ion channel essential for sensing chemical damage. The Journal of Neuroscience, 27, 11412–11415.

    Article  CAS  PubMed  Google Scholar 

  86. Simon, F., Leiva-Salcedo, E., Armisen, R., et al. (2010). Hydrogen peroxide removes TRPM4 current desensitization conferring increased vulnerability to necrotic cell death. The Journal of Biological Chemistry, 285, 37150–37158.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Kolisek, M., Beck, A., Fleig, A., & Penner, R. (2005). Cyclic ADP-ribose and hydrogen peroxide synergize with ADP-ribose in the activation of TRPM2 channels. Molecular Cell, 18, 61–69.

    Article  CAS  PubMed  Google Scholar 

  88. Volk, T., Hensel, M., & Kox, W. J. (1997). Transient Ca2+ changes in endothelial cells induced by low doses of reactive oxygen species: Role of hydrogen peroxide. Molecular and Cellular Biochemistry, 171, 11–21.

    Article  CAS  PubMed  Google Scholar 

  89. Dreher, D., Jornot, L., & Junod, A. F. (1995). Effects of hypoxanthine-xanthine oxidase on Ca2+ stores and protein synthesis in human endothelial cells. Circulation Research, 76, 388–395.

    Article  CAS  PubMed  Google Scholar 

  90. Graier, W. F., Hoebel, B. G., Paltauf-Doburzynska, J., & Kostner, G. M. (1998). Effects of superoxide anions on endothelial Ca2+ signaling pathways. Arteriosclerosis, Thrombosis, and Vascular Biology, 18, 1470–1479.

    Article  CAS  PubMed  Google Scholar 

  91. Evangelista, A. M., Thompson, M. D., Bolotina, V. M., Tong, X., & Cohen, R. A. (2012). Nox4- and Nox2-dependent oxidant production is required for VEGF-induced SERCA cysteine-674 S-glutathiolation and endothelial cell migration. Free Radical Biology & Medicine, 53, 2327–2334.

    Article  CAS  Google Scholar 

  92. Bogeski, I., Kilch, T., & Niemeyer, B. A. (2012). ROS and SOCE: Recent advances and controversies in the regulation of STIM and Orai. The Journal of Physiology, 590, 4193–4200.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Dreher, D., & Junod, A. F. (1995). Differential effects of superoxide, hydrogen peroxide, and hydroxyl radical on intracellular calcium in human endothelial cells. Journal of Cellular Physiology, 162, 147–153.

    Article  CAS  PubMed  Google Scholar 

  94. Contreras, L., Drago, I., Zampese, E., & Pozzan, T. (2010). Mitochondria: The calcium connection. Biochimica et Biophysica Acta, 1797, 607–618.

    Article  CAS  PubMed  Google Scholar 

  95. Rizzuto, R., Marchi, S., Bonora, M., et al. (2009). Ca(2+) transfer from the ER to mitochondria: When, how and why. Biochimica et Biophysica Acta, 1789, 1342–1351.

    Article  CAS  Google Scholar 

  96. Dromparis, P., Paulin, R., Sutendra, G., Qi, A. C., Bonnet, S., & Michelakis, E. D. (2013). Uncoupling protein 2 deficiency mimics the effects of hypoxia and endoplasmic reticulum stress on mitochondria and triggers pseudohypoxic pulmonary vascular remodeling and pulmonary hypertension. Circulation Research, 113, 126–136.

    Article  CAS  PubMed  Google Scholar 

  97. Fijalkowska, I., Xu, W., Comhair, S. A., et al. (2010). Hypoxia inducible-factor1alpha regulates the metabolic shift of pulmonary hypertensive endothelial cells. The American Journal of Pathology, 176, 1130–1138.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Bonnet, S., Michelakis, E. D., Porter, C. J., et al. (2006). An abnormal mitochondrial-hypoxia inducible factor-1alpha-Kv channel pathway disrupts oxygen sensing and triggers pulmonary arterial hypertension in fawn hooded rats: Similarities to human pulmonary arterial hypertension. Circulation, 113, 2630–2641.

    Article  CAS  PubMed  Google Scholar 

  99. Evangelista, A. M., Thompson, M. D., Weisbrod, R. M., et al. (2012). Redox regulation of SERCA2 is required for vascular endothelial growth factor-induced signaling and endothelial cell migration. Antioxidants & Redox Signaling, 17, 1099–1108.

    Article  CAS  Google Scholar 

  100. Barker, A. J., Roldan-Alzate, A., Entezari, P., et al. (2015). Four-dimensional flow assessment of pulmonary artery flow and wall shear stress in adult pulmonary arterial hypertension: Results from two institutions. Magnetic Resonance in Medicine, 73, 1904–1913.

    Article  PubMed  Google Scholar 

  101. Kheyfets, V. O., Schafer, M., Podgorski, C. A., et al. (2016). 4D magnetic resonance flow imaging for estimating pulmonary vascular resistance in pulmonary hypertension. Journal of Magnetic Resonance Imaging, 44, 914–922.

    Article  PubMed  PubMed Central  Google Scholar 

  102. Garcia-Cardena, G., Comander, J. I., Blackman, B. R., Anderson, K. R., & Gimbrone, M. A. (2001). Mechanosensitive endothelial gene expression profiles: Scripts for the role of hemodynamics in atherogenesis? Annals of the New York Academy of Sciences, 947, 1–6.

    Article  CAS  PubMed  Google Scholar 

  103. Barakat, A. I. (1999). Responsiveness of vascular endothelium to shear stress: Potential role of ion channels and cellular cytoskeleton (review). International Journal of Molecular Medicine, 4, 323–332.

    CAS  PubMed  Google Scholar 

  104. Laurindo, F. R., Pedro Mde, A., Barbeiro, H. V., et al. (1994). Vascular free radical release. Ex vivo and in vivo evidence for a flow-dependent endothelial mechanism. Circulation Research, 74, 700–709.

    Article  CAS  PubMed  Google Scholar 

  105. Chiu, J. J., Wung, B. S., Shyy, J. Y., Hsieh, H. J., & Wang, D. L. (1997). Reactive oxygen species are involved in shear stress-induced intercellular adhesion molecule-1 expression in endothelial cells. Arteriosclerosis, Thrombosis, and Vascular Biology, 17, 3570–3577.

    Article  CAS  PubMed  Google Scholar 

  106. Wei, Z., Costa, K., Al-Mehdi, A. B., Dodia, C., Muzykantov, V., & Fisher, A. B. (1999). Simulated ischemia in flow-adapted endothelial cells leads to generation of reactive oxygen species and cell signaling. Circulation Research, 85, 682–689.

    Article  CAS  PubMed  Google Scholar 

  107. Ando, J., Komatsuda, T., & Kamiya, A. (1988). Cytoplasmic calcium response to fluid shear stress in cultured vascular endothelial cells. In Vitro Cellular & Developmental Biology, 24, 871–877.

    Article  CAS  Google Scholar 

  108. Mo, M., Eskin, S. G., & Schilling, W. P. (1991). Flow-induced changes in Ca2+ signaling of vascular endothelial cells: Effect of shear stress and ATP. The American Journal of Physiology, 260, H1698–H1707.

    CAS  PubMed  Google Scholar 

  109. Shen, J., Luscinskas, F. W., Connolly, A., Dewey, C. F., Jr., & Gimbrone, M. A., Jr. (1992). Fluid shear stress modulates cytosolic free calcium in vascular endothelial cells. The American Journal of Physiology, 262, C384–C390.

    CAS  PubMed  Google Scholar 

  110. Zhang, Q., Matsuzaki, I., Chatterjee, S., & Fisher, A. B. (2005). Activation of endothelial NADPH oxidase during normoxic lung ischemia is KATP channel dependent. American Journal of Physiology. Lung Cellular and Molecular Physiology, 289, L954–L961.

    Article  CAS  PubMed  Google Scholar 

  111. Al-Mehdi, A. B., Zhao, G., Dodia, C., et al. (1998). Endothelial NADPH oxidase as the source of oxidants in lungs exposed to ischemia or high K+. Circulation Research, 83, 730–737.

    Article  CAS  PubMed  Google Scholar 

  112. Song, C., Al-Mehdi, A. B., & Fisher, A. B. (2001). An immediate endothelial cell signaling response to lung ischemia. American Journal of Physiology. Lung Cellular and Molecular Physiology, 281, L993–1000.

    CAS  PubMed  Google Scholar 

  113. Tozawa, K., al-Mehdi, A. B., Muzykantov, V., & Fisher, A. B. (1999). In situ imaging of intracellular calcium with ischemia in lung subpleural microvascular endothelial cells. Antioxidants & Redox Signaling, 1, 145–154.

    Article  CAS  Google Scholar 

  114. Song, S., Yamamura, A., Yamamura, H., et al. (2014). Flow shear stress enhances intracellular Ca2+ signaling in pulmonary artery smooth muscle cells from patients with pulmonary arterial hypertension. American Journal of Physiology. Cell Physiology, 307, C373–C383.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Liu, Q., Sham, J. S., Shimoda, L. A., & Sylvester, J. T. (2001). Hypoxic constriction of porcine distal pulmonary arteries: Endothelium and endothelin dependence. American Journal of Physiology. Lung Cellular and Molecular Physiology, 280, L856–L865.

    CAS  PubMed  Google Scholar 

  116. Sylvester, J. T., Shimoda, L. A., Aaronson, P. I., & Ward, J. P. (2012). Hypoxic pulmonary vasoconstriction. Physiological Reviews, 92, 367–520.

    Article  CAS  PubMed  Google Scholar 

  117. Goldenberg, N. M., Wang, L., Ranke, H., Liedtke, W., Tabuchi, A., & Kuebler, W. M. (2015). TRPV4 is required for hypoxic pulmonary vasoconstriction. Anesthesiology, 122, 1338–1348.

    Article  CAS  PubMed  Google Scholar 

  118. Pelaez, N. J., Braun, T. R., Paul, R. J., Meiss, R. A., & Packer, C. S. (2000). H(2)O(2) mediates Ca(2+)- and MLC(20) phosphorylation-independent contraction in intact and permeabilized vascular muscle. American Journal of Physiology. Heart and Circulatory Physiology, 279, H1185–H1193.

    CAS  PubMed  Google Scholar 

  119. Pourmahram, G. E., Snetkov, V. A., Shaifta, Y., et al. (2008). Constriction of pulmonary artery by peroxide: Role of Ca2+ release and PKC. Free Radical Biology & Medicine, 45, 1468–1476.

    Article  CAS  Google Scholar 

  120. Sheehan, D. W., Giese, E. C., Gugino, S. F., & Russell, J. A. (1993). Characterization and mechanisms of H2O2-induced contractions of pulmonary arteries. The American Journal of Physiology, 264, H1542–H1547.

    CAS  PubMed  Google Scholar 

  121. Forstermann, U., & Munzel, T. (2006). Endothelial nitric oxide synthase in vascular disease: From marvel to menace. Circulation, 113, 1708–1714.

    Article  PubMed  CAS  Google Scholar 

  122. Kuzkaya, N., Weissmann, N., Harrison, D. G., & Dikalov, S. (2003). Interactions of peroxynitrite, tetrahydrobiopterin, ascorbic acid, and thiols: Implications for uncoupling endothelial nitric-oxide synthase. The Journal of Biological Chemistry, 278, 22546–22554.

    Article  CAS  PubMed  Google Scholar 

  123. Zou, M. H., Shi, C., & Cohen, R. A. (2002). Oxidation of the zinc-thiolate complex and uncoupling of endothelial nitric oxide synthase by peroxynitrite. The Journal of Clinical Investigation, 109, 817–826.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Fleming, I., & Busse, R. (1999). Signal transduction of eNOS activation. Cardiovascular Research, 43, 532–541.

    Article  CAS  PubMed  Google Scholar 

  125. Busse, R., & Fleming, I. (1995). Regulation and functional consequences of endothelial nitric oxide formation. Annals of Medicine, 27, 331–340.

    Article  CAS  PubMed  Google Scholar 

  126. Xu, W., Kaneko, F. T., Zheng, S., et al. (2004). Increased arginase II and decreased NO synthesis in endothelial cells of patients with pulmonary arterial hypertension. FASEB Journal, 18, 1746–1748.

    CAS  PubMed  Google Scholar 

  127. Ghosh, S., Gupta, M., Xu, W., et al. (2016). Phosphorylation inactivation of endothelial nitric oxide synthesis in pulmonary arterial hypertension. American Journal of Physiology. Lung Cellular and Molecular Physiology, 310, L1199–L1205.

    Article  PubMed  PubMed Central  Google Scholar 

  128. Chen, F., Kumar, S., Yu, Y., et al. (2014). PKC-dependent phosphorylation of eNOS at T495 regulates eNOS coupling and endothelial barrier function in response to G+ −toxins. PloS One, 9, e99823.

    Article  PubMed  PubMed Central  Google Scholar 

  129. Tang, H., Yamamura, A., Yamamura, H., et al. (2016). Pathogenic role of calcium-sensing receptors in the development and progression of pulmonary hypertension. American Journal of Physiology. Lung Cellular and Molecular Physiology, 310, L846–L859.

    Article  PubMed  PubMed Central  Google Scholar 

  130. Wan, J., Yamamura, A., Zimnicka, A. M., et al. (2013). Chronic hypoxia selectively enhances L- and T-type voltage-dependent Ca2+ channel activity in pulmonary artery by upregulating Cav1.2 and Cav3.2. American Journal of Physiology. Lung Cellular and Molecular Physiology, 305, L154–L164.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Broughton, B. R., Jernigan, N. L., Norton, C. E., Walker, B. R., & Resta, T. C. (2010). Chronic hypoxia augments depolarization-induced Ca2+ sensitization in pulmonary vascular smooth muscle through superoxide-dependent stimulation of RhoA. American Journal of Physiology. Lung Cellular and Molecular Physiology, 298, L232–L242.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Karthik Suresh M.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Suresh, K., Shimoda, L.A. (2017). Endothelial Cell Reactive Oxygen Species and Ca2+ Signaling in Pulmonary Hypertension. In: Wang, YX. (eds) Pulmonary Vasculature Redox Signaling in Health and Disease. Advances in Experimental Medicine and Biology, vol 967. Springer, Cham. https://doi.org/10.1007/978-3-319-63245-2_18

Download citation

Publish with us

Policies and ethics