Skip to main content

Lung Ischaemia–Reperfusion Injury: The Role of Reactive Oxygen Species

  • Chapter
  • First Online:
Pulmonary Vasculature Redox Signaling in Health and Disease

Abstract

Lung ischaemia–reperfusion injury (LIRI) occurs in many lung diseases and during surgical procedures such as lung transplantation. The re-establishment of blood flow and oxygen delivery into the previously ischaemic lung exacerbates the ischaemic injury and leads to increased microvascular permeability and pulmonary vascular resistance as well as to vigorous activation of the immune response. These events initiate the irreversible damage of the lung with subsequent oedema formation that can result in systemic hypoxaemia and multi-organ failure. Alterations in the production of reactive oxygen species (ROS) and reactive nitrogen species (RNS) have been suggested as crucial mediators of such responses during ischaemia–reperfusion in the lung. Among numerous potential sources of ROS/RNS within cells, nicotinamide adenine dinucleotide phosphate (NADPH) oxidases, xanthine oxidases, nitric oxide synthases and mitochondria have been investigated during LIRI. Against this background, we aim to review here the extensive literature about the ROS-mediated cellular signalling during LIRI, as well as the effectiveness of antioxidants as treatment option for LIRI.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Abreu Mda, M., Pazetti, R., Almeida, F. M., et al. (2014). Methylene blue attenuates ischemia-reperfusion injury in lung transplantation. The Journal of Surgical Research, 192, 635–641.

    Article  PubMed  CAS  Google Scholar 

  2. Adams, L., Franco, M. C., & Estevez, A. G. (2015). Reactive nitrogen species in cellular signaling. Experimental Biology and Medicine, 240, 711–717.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Adkins, W. K., & Taylor, A. E. (1990). Role of xanthine oxidase and neutrophils in ischemia-reperfusion injury in rabbit lung. Journal of Applied Physiology, 69, 2012–2018.

    CAS  PubMed  Google Scholar 

  4. Allison, R. C., Kyle, J., Adkins, W. K., et al. (1990). Effect of ischemia reperfusion or hypoxia reoxygenation on lung vascular permeability and resistance. Journal of Applied Physiology, 69, 597–603.

    CAS  PubMed  Google Scholar 

  5. Almeida, F. M., Oliveira-Junior, M. C., Souza, R. A., et al. (2016). Creatine supplementation attenuates pulmonary and systemic effects of lung ischemia and reperfusion injury. The Journal of Heart and Lung Transplantation, 35, 242–250.

    Article  PubMed  Google Scholar 

  6. Altenhofer, S., Kleikers, P. W., Radermacher, K. A., et al. (2012). The NOX toolbox: Validating the role of NADPH oxidases in physiology and disease. Cellular and Molecular Life Sciences, 69, 2327–2343.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  7. Ameziane-El-Hassani, R., Schlumberger, M., & Dupuy, C. (2016). NADPH oxidases: New actors in thyroid cancer? Nature Reviews. Endocrinology, 12, 485–494.

    Article  CAS  PubMed  Google Scholar 

  8. Apostolakis, E., Filos, K. S., Koletsis, E., et al. (2010). Lung dysfunction following cardiopulmonary bypass. Journal of Cardiac Surgery, 25, 47–55.

    Article  PubMed  Google Scholar 

  9. Ascenzi, P., Di Masi, A., Sciorati, C., et al. (2010). Peroxynitrite—An ugly biofactor? BioFactors, 36, 264–273.

    Article  CAS  PubMed  Google Scholar 

  10. Babcock, G. T. (1999). How oxygen is activated and reduced in respiration. Proceedings of the National Academy of Sciences of the United States of America, 96, 12971–12973.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Babiker, M. A., Obeid, H. A., & Ashong, E. F. (1985). Acute reversible pulmonary ischemia. A cause of the acute chest syndrome in sickle cell disease. Clinical Pediatrics, 24, 716–718.

    Article  CAS  PubMed  Google Scholar 

  12. Balaban, R. S., Nemoto, S., & Finkel, T. (2005). Mitochondria, oxidants, and aging. Cell, 120, 483–495.

    Article  CAS  PubMed  Google Scholar 

  13. Bannister, J. P., Young, B. A., Main, M. J., et al. (1999). The effects of oxidizing and cysteine-reactive reagents on the inward rectifier potassium channels Kir2.3 and Kir1.1. Pflugers Archiv: European Journal of Physiology, 438, 868–878.

    Article  CAS  PubMed  Google Scholar 

  14. Bartz, R. R., & Piantadosi, C. A. (2010). Clinical review: Oxygen as a signaling molecule. Critical Care, 14, 234.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Baste, J. M., Gay, A., Smail, H., et al. (2015). Organotypic lung culture: A new model for studying ischemia and ex vivo perfusion in lung transplantation. Experimental Lung Research, 41, 564–575.

    Article  CAS  PubMed  Google Scholar 

  16. Battelli, M. G., Polito, L., Bortolotti, M., et al. (2016). Xanthine oxidoreductase-derived reactive species: Physiological and pathological effects. Oxidative Medicine and Cellular Longevity, 2016, 3527579.

    Article  PubMed  Google Scholar 

  17. Becker, L. B. (2004). New concepts in reactive oxygen species and cardiovascular reperfusion physiology. Cardiovascular Research, 61, 461–470.

    Article  CAS  PubMed  Google Scholar 

  18. Bedard, K., & Krause, K. H. (2007). The NOX family of ROS-generating NADPH oxidases: Physiology and pathophysiology. Physiological Reviews, 87, 245–313.

    Article  CAS  PubMed  Google Scholar 

  19. Benzing, A., & Geiger, K. (1994). Inhaled nitric oxide lowers pulmonary capillary pressure and changes longitudinal distribution of pulmonary vascular resistance in patients with acute lung injury. Acta Anaesthesiologica Scandinavica, 38, 640–645.

    Article  CAS  PubMed  Google Scholar 

  20. Bernard, K., Hecker, L., Luckhardt, T. R., et al. (2014). NADPH oxidases in lung health and disease. Antioxidants & Redox Signaling, 20, 2838–2853.

    Article  CAS  Google Scholar 

  21. Bishop, M. J., Su, M. S., Chi, E. Y., et al. (1992). Effects of polyethylene glycol-linked superoxide dismutase and catalase during in vivo lung ischemia and reperfusion. Journal of Critical Care, 7, 236–243.

    Article  CAS  Google Scholar 

  22. Bogdan, C. (2015). Nitric oxide synthase in innate and adaptive immunity: An update. Trends in Immunology, 36, 161–178.

    Article  CAS  PubMed  Google Scholar 

  23. Brandes, R. P. (2010). Vascular functions of NADPH oxidases. Hypertension, 56, 17–21.

    Article  CAS  PubMed  Google Scholar 

  24. Brandes, R. P., & Kreuzer, J. (2005). Vascular NADPH oxidases: Molecular mechanisms of activation. Cardiovascular Research, 65, 16–27.

    Article  CAS  PubMed  Google Scholar 

  25. Brandes, R. P., Weissmann, N., & Schroder, K. (2010). NADPH oxidases in cardiovascular disease. Free Radical Biology & Medicine, 49, 687–706.

    Article  CAS  Google Scholar 

  26. Brandes, R. P., Weissmann, N., & Schroder, K. (2014). Nox family NADPH oxidases in mechano-transduction: Mechanisms and consequences. Antioxidants & Redox Signaling, 20, 887–898.

    Article  CAS  Google Scholar 

  27. Brondino, C. D., Romao, M. J., Moura, I., et al. (2006). Molybdenum and tungsten enzymes: The xanthine oxidase family. Current Opinion in Chemical Biology, 10, 109–114.

    Article  CAS  PubMed  Google Scholar 

  28. Browner, N. C., Dey, N. B., Bloch, K. D., et al. (2004). Regulation of cGMP-dependent protein kinase expression by soluble guanylyl cyclase in vascular smooth muscle cells. The Journal of Biological Chemistry, 279, 46631–46636.

    Article  CAS  PubMed  Google Scholar 

  29. Burkard, N., Williams, T., Czolbe, M., et al. (2010). Conditional overexpression of neuronal nitric oxide synthase is cardioprotective in ischemia/reperfusion. Circulation, 122, 1588–1603.

    Article  CAS  PubMed  Google Scholar 

  30. Camara, A. K., Bienengraeber, M., & Stowe, D. F. (2011). Mitochondrial approaches to protect against cardiac ischemia and reperfusion injury. Frontiers in Physiology, 2, 13.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Cantu-Medellin, N., & Kelley, E. E. (2013). Xanthine oxidoreductase-catalyzed reactive species generation: A process in critical need of reevaluation. Redox Biology, 1, 353–358.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Cantu-Medellin, N., & Kelley, E. E. (2013). Xanthine oxidoreductase-catalyzed reduction of nitrite to nitric oxide: Insights regarding where, when and how. Nitric Oxide, 34, 19–26.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Cantu, E., Lederer, D. J., Meyer, K., et al. (2013). Gene set enrichment analysis identifies key innate immune pathways in primary graft dysfunction after lung transplantation. American Journal of Transplantation, 13, 1898–1904.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Cantu, E., Shah, R. J., Lin, W., et al. (2015). Oxidant stress regulatory genetic variation in recipients and donors contributes to risk of primary graft dysfunction after lung transplantation. The Journal of Thoracic and Cardiovascular Surgery, 149, 596–602.

    Article  CAS  PubMed  Google Scholar 

  35. Cantu, E., Suzuki, Y., Diamond, J. M., et al. (2016). Protein quantitative trait loci analysis identifies genetic variation in the innate immune regulator TOLLIP in post-lung transplant primary graft dysfunction risk. American Journal of Transplantation, 16, 833–840.

    Article  CAS  PubMed  Google Scholar 

  36. Carnicer, R., Crabtree, M. J., Sivakumaran, V., et al. (2013). Nitric oxide synthases in heart failure. Antioxidants & Redox Signaling, 18, 1078–1099.

    Article  CAS  Google Scholar 

  37. Case, A. J., Li, S., Basu, U., et al. (2013). Mitochondrial-localized NADPH oxidase 4 is a source of superoxide in angiotensin II-stimulated neurons. American Journal of Physiology. Heart and Circulatory Physiology, 305, H19–H28.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Catala, A. (2009). Lipid peroxidation of membrane phospholipids generates hydroxy-alkenals and oxidized phospholipids active in physiological and/or pathological conditions. Chemistry and Physics of Lipids, 157, 1–11.

    Article  CAS  PubMed  Google Scholar 

  39. Chandel, N. S. (2010). Mitochondrial regulation of oxygen sensing. Advances in Experimental Medicine and Biology, 661, 339–354.

    Article  CAS  PubMed  Google Scholar 

  40. Chatterjee, S., Browning, E. A., Hong, N., et al. (2012). Membrane depolarization is the trigger for PI3K/Akt activation and leads to the generation of ROS. American Journal of Physiology. Heart and Circulatory Physiology, 302, H105–H114.

    Article  CAS  PubMed  Google Scholar 

  41. Chen, F., & Date, H. (2015). Update on ischemia-reperfusion injury in lung transplantation. Current Opinion in Organ Transplantation, 20, 515–520.

    Article  CAS  PubMed  Google Scholar 

  42. Chen, K., Kirber, M. T., Xiao, H., et al. (2008). Regulation of ROS signal transduction by NADPH oxidase 4 localization. The Journal of Cell Biology, 181, 1129–1139.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Chen, X., Chen, H., Deng, R., et al. (2014). Pros and cons of current approaches for detecting peroxynitrite and their applications. Biomedical Journal, 37, 120–126.

    Article  CAS  PubMed  Google Scholar 

  44. Chen, Y., Yu, A., Saari, J. T., et al. (1997). Repression of hypoxia-reoxygenation injury in the catalase-overexpressing heart of transgenic mice. Proceedings of the Society for Experimental Biology and Medicine. Society for Experimental Biology and Medicine, 216, 112–116.

    Article  CAS  Google Scholar 

  45. Chien, S., Zhang, F., Niu, W., et al. (2000). Comparison of university of wisconsin, euro-collins, low-potassium dextran, and krebs-henseleit solutions for hypothermic lung preservation. The Journal of Thoracic and Cardiovascular Surgery, 119, 921–930.

    Article  CAS  PubMed  Google Scholar 

  46. Cho, K. J., Seo, J. M., & Kim, J. H. (2011). Bioactive lipoxygenase metabolites stimulation of NADPH oxidases and reactive oxygen species. Molecules and Cells, 32, 1–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Choi, D. H., Cristovao, A. C., Guhathakurta, S., et al. (2012). NADPH oxidase 1-mediated oxidative stress leads to dopamine neuron death in Parkinson’s disease. Antioxidants & Redox Signaling, 16, 1033–1045.

    Article  CAS  Google Scholar 

  48. Chouchani, E. T., Pell, V. R., Gaude, E., et al. (2014). Ischaemic accumulation of succinate controls reperfusion injury through mitochondrial ROS. Nature, 515, 431–435.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Chouchani, E. T., Pell, V. R., James, A. M., et al. (2016). A unifying mechanism for mitochondrial superoxide production during ischemia-reperfusion injury. Cell Metabolism, 23, 254–263.

    Article  CAS  PubMed  Google Scholar 

  50. Connor, N., Williams, C., Ciesielski, W., et al. (2002). Global effects of xanthine oxidase stress on alveolar type II cells. Pediatric Critical Care Medicine, 3, 280–287.

    Article  PubMed  Google Scholar 

  51. Conti, A., Scala, S., D’Agostino, P., et al. (2007). Wide gene expression profiling of ischemia-reperfusion injury in human liver transplantation. Liver Transplantation, 13, 99–113.

    Article  PubMed  Google Scholar 

  52. Costa, E. D., Rezende, B. A., Cortes, S. F., et al. (2016). Neuronal nitric oxide synthase in vascular physiology and diseases. Frontiers in Physiology, 7, 206.

    Article  PubMed  PubMed Central  Google Scholar 

  53. Cui, T., Schopfer, F. J., Zhang, J., et al. (2006). Nitrated fatty acids: Endogenous anti-inflammatory signaling mediators. The Journal of Biological Chemistry, 281, 35686–35698.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Cypel, M., Yeung, J. C., Liu, M., et al. (2011). Normothermic ex vivo lung perfusion in clinical lung transplantation. The New England Journal of Medicine, 364, 1431–1440.

    Article  CAS  PubMed  Google Scholar 

  55. D’Amico, F., Vitale, A., Piovan, D., et al. (2013). Use of N-acetylcysteine during liver procurement: A prospective randomized controlled study. Liver Transplantation, 19, 135–144.

    Article  PubMed  Google Scholar 

  56. D’Autreaux, B., & Toledano, M. B. (2007). ROS as signalling molecules: Mechanisms that generate specificity in ROS homeostasis. Nature Reviews. Molecular Cell Biology, 8, 813–824.

    Article  PubMed  CAS  Google Scholar 

  57. Dan Dunn, J., Alvarez, L. A., Zhang, X., et al. (2015). Reactive oxygen species and mitochondria: A nexus of cellular homeostasis. Redox Biology, 6, 472–485.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Danel, C., Erzurum, S. C., Prayssac, P., et al. (1998). Gene therapy for oxidant injury-related diseases: Adenovirus-mediated transfer of superoxide dismutase and catalase cDNAs protects against hyperoxia but not against ischemia-reperfusion lung injury. Human Gene Therapy, 9, 1487–1496.

    Article  CAS  PubMed  Google Scholar 

  59. Dare, A. J., Logan, A., Prime, T. A., et al. (2015). The mitochondria-targeted anti-oxidant MitoQ decreases ischemia-reperfusion injury in a murine syngeneic heart transplant model. The Journal of Heart and Lung Transplantation, 34, 1471–1480.

    Article  PubMed  PubMed Central  Google Scholar 

  60. De Lima, P. R., Lynn Bickta, J., & Shiva, S. (2015). Nitrite confers preconditioning and cytoprotection after ischemia/reperfusion injury through the modulation of mitochondrial function. Antioxidants & Redox Signaling, 23, 307–327.

    Article  CAS  Google Scholar 

  61. De Perrot, M., Liu, M., Waddell, T. K., et al. (2003). Ischemia-reperfusion-induced lung injury. American Journal of Respiratory and Critical Care Medicine, 167, 490–511.

    Article  PubMed  Google Scholar 

  62. Den Hengst, W. A., Gielis, J. F., Lin, J. Y., et al. (2010). Lung ischemia-reperfusion injury: A molecular and clinical view on a complex pathophysiological process. American Journal of Physiology. Heart and Circulatory Physiology, 299, H1283–H1299.

    Article  CAS  Google Scholar 

  63. Deng, C., Zhai, Z., Wu, D., et al. (2015). Inflammatory response and pneumocyte apoptosis during lung ischemia-reperfusion injury in an experimental pulmonary thromboembolism model. Journal of Thrombosis and Thrombolysis, 40, 42–53.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  64. Deshmukh, D. R., Mirochnitchenko, O., Ghole, V. S., et al. (1997). Intestinal ischemia and reperfusion injury in transgenic mice overexpressing copper-zinc superoxide dismutase. The American Journal of Physiology, 273, C1130–C1135.

    CAS  PubMed  Google Scholar 

  65. Ding, J., Zhang, Q., Luo, Q., et al. (2016). Alda-1 attenuates lung ischemia-reperfusion injury by reducing 4-hydroxy-2-nonenal in alveolar epithelial cells. Critical Care Medicine, 44, e544–e552.

    Article  CAS  PubMed  Google Scholar 

  66. Dixon, J. T., Gozal, E., & Roberts, A. M. (2012). Platelet-mediated vascular dysfunction during acute lung injury. Archives of Physiology and Biochemistry, 118, 72–82.

    Article  CAS  PubMed  Google Scholar 

  67. Dodd, O. J., & Pearse, D. B. (2000). Effect of the NADPH oxidase inhibitor apocynin on ischemia-reperfusion lung injury. American Journal of Physiology. Heart and Circulatory Physiology, 279, H303–H312.

    Google Scholar 

  68. Drummond, G. R., & Sobey, C. G. (2014). Endothelial NADPH oxidases: Which NOX to target in vascular disease? Trends in Endocrinology and Metabolism, 25, 452–463.

    Article  CAS  PubMed  Google Scholar 

  69. Dupont, G. P., Huecksteadt, T. P., Marshall, B. C., et al. (1992). Regulation of xanthine dehydrogenase and xanthine oxidase activity and gene expression in cultured rat pulmonary endothelial cells. The Journal of Clinical Investigation, 89, 197–202.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Egemnazarov, B. (2008). Role of NO-cGMP signalling pathway in mediation of ischemia-reperfusion lung injury. (Doctoral dissertation). Retrieved from http://geb.uni-giessen.de/geb/volltexte/2009/7215/pdf/EgemnazarovBakytbek_2009_07_06.pdf

  71. Egemnazarov, B., Sydykov, A., Schermuly, R. T., et al. (2009). Novel soluble guanylyl cyclase stimulator BAY 41-2272 attenuates ischemia-reperfusion-induced lung injury. American Journal of Physiology. Lung Cellular and Molecular Physiology, 296, L462–L469.

    Article  CAS  PubMed  Google Scholar 

  72. Eltzschig, H. K., & Collard, C. D. (2004). Vascular ischaemia and reperfusion injury. British Medical Bulletin, 70, 71–86.

    Article  CAS  PubMed  Google Scholar 

  73. Eltzschig, H. K., & Eckle, T. (2011). Ischemia and reperfusion—From mechanism to translation. Nature Medicine, 17, 1391–1401.

    Article  CAS  PubMed  Google Scholar 

  74. Enyedi, B., Zana, M., Donko, A., et al. (2013). Spatial and temporal analysis of NADPH oxidase-generated hydrogen peroxide signals by novel fluorescent reporter proteins. Antioxidants & Redox Signaling, 19, 523–534.

    Article  CAS  Google Scholar 

  75. Eppinger, M. J., Ward, P. A., Jones, M. L., et al. (1995). Disparate effects of nitric oxide on lung ischemia-reperfusion injury. The Annals of Thoracic Surgery, 60, 1169–1175. Discussion 1176.

    Article  CAS  PubMed  Google Scholar 

  76. Escobales, N., Nunez, R. E., Jang, S., et al. (2014). Mitochondria-targeted ROS scavenger improves post-ischemic recovery of cardiac function and attenuates mitochondrial abnormalities in aged rats. Journal of Molecular and Cellular Cardiology, 77, 136–146.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Esme, H., Fidan, H., Koken, T., et al. (2006). Effect of lung ischemia--reperfusion on oxidative stress parameters of remote tissues. European Journal of Cardio-Thoracic Surgery, 29, 294–298.

    Article  PubMed  Google Scholar 

  78. Evgenov, O. V., Pacher, P., Schmidt, P. M., et al. (2006). NO-independent stimulators and activators of soluble guanylate cyclase: Discovery and therapeutic potential. Nature Reviews. Drug Discovery, 5, 755–768.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Feron, O., Belhassen, L., Kobzik, L., et al. (1996). Endothelial nitric oxide synthase targeting to caveolae. Specific interactions with caveolin isoforms in cardiac myocytes and endothelial cells. The Journal of Biological Chemistry, 271, 22810–22814.

    Article  CAS  PubMed  Google Scholar 

  80. Ferrari, R. S., & Andrade, C. F. (2015). Oxidative stress and lung ischemia-reperfusion injury. Oxidative Medicine and Cellular Longevity, 2015, 590987.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  81. Fiser, S. M., Tribble, C. G., Long, S. M., et al. (2002). Ischemia-reperfusion injury after lung transplantation increases risk of late bronchiolitis obliterans syndrome. The Annals of Thoracic Surgery, 73, 1041–1047. Discussion 1047–1048.

    Article  PubMed  Google Scholar 

  82. Fisher, A. B., & Dodia, C. (1981). Lung as a model for evaluation of critical intracellular PO2 and PCO. The American Journal of Physiology, 241, E47–E50.

    CAS  PubMed  Google Scholar 

  83. Fisher, A. B., Dodia, C., Tan, Z. T., et al. (1991). Oxygen-dependent lipid peroxidation during lung ischemia. The Journal of Clinical Investigation, 88, 674–679.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Forgiarini, L. A., Jr., Grun, G., Kretzmann, N. A., et al. (2013). When is injury potentially reversible in a lung ischemia-reperfusion model? The Journal of Surgical Research, 179, 168–174.

    Article  CAS  PubMed  Google Scholar 

  85. Forgiarini, L. F., Forgiarini, L. A., Jr., Da Rosa, D. P., et al. (2014). N-acetylcysteine administration confers lung protection in different phases of lung ischaemia-reperfusion injury. Interactive Cardiovascular and Thoracic Surgery, 19, 894–899.

    Article  PubMed  Google Scholar 

  86. Fritts, H. W., Jr., Harris, P., Chidsey, C. A., III, et al. (1961). Estimation of flow through bronchial-pulmonary vascular anastomoses with use of T-1824 dye. Circulation, 23, 390–398.

    Article  PubMed  Google Scholar 

  87. Fujinaga, T., Nakamura, T., Fukuse, T., et al. (2006). Isoflurane inhalation after circulatory arrest protects against warm ischemia reperfusion injury of the lungs. Transplantation, 82, 1168–1174.

    Article  CAS  PubMed  Google Scholar 

  88. Fukuse, T., Hirata, T., Nakamura, T., et al. (1999). Influence of deflated and anaerobic conditions during cold storage on rat lungs. American Journal of Respiratory and Critical Care Medicine, 160, 621–627.

    Article  CAS  PubMed  Google Scholar 

  89. Gan, H. L., Zhang, J. Q., Sun, J. C., et al. (2014). Preoperative transcatheter occlusion of bronchopulmonary collateral artery reduces reperfusion pulmonary edema and improves early hemodynamic function after pulmonary thromboendarterectomy. The Journal of Thoracic and Cardiovascular Surgery, 148, 3014–3019.

    Article  PubMed  Google Scholar 

  90. Ganter, C. C., Jakob, S. M., & Takala, J. (2006). Pulmonary capillary pressure. A review. Minerva Anestesiologica, 72, 21–36.

    CAS  PubMed  Google Scholar 

  91. Gardner, P. R. (1997). Superoxide-driven aconitase FE-S center cycling. Bioscience Reports, 17, 33–42.

    Article  CAS  PubMed  Google Scholar 

  92. Gautam, N., Olofsson, A. M., Herwald, H., et al. (2001). Heparin-binding protein (HBP/CAP37): A missing link in neutrophil-evoked alteration of vascular permeability. Nature Medicine, 7, 1123–1127.

    Article  CAS  PubMed  Google Scholar 

  93. Geudens, N., Van De Wauwer, C., Neyrinck, A. P., et al. (2007). N-acetyl cysteine pre-treatment attenuates inflammatory changes in the warm ischemic murine lung. The Journal of Heart and Lung Transplantation, 26, 1326–1332.

    Article  PubMed  Google Scholar 

  94. Gielis, J. F., Boulet, G. A., Briede, J. J., et al. (2015). Longitudinal quantification of radical bursts during pulmonary ischaemia and reperfusion. European Journal of Cardio-Thoracic Surgery, 48, 622–629.

    Article  PubMed  Google Scholar 

  95. Giordano, A., Tonello, C., Bulbarelli, A., et al. (2002). Evidence for a functional nitric oxide synthase system in brown adipocyte nucleus. FEBS Letters, 514, 135–140.

    Article  CAS  PubMed  Google Scholar 

  96. Girn, H. R., Ahilathirunayagam, S., Mavor, A. I., et al. (2007). Reperfusion syndrome: Cellular mechanisms of microvascular dysfunction and potential therapeutic strategies. Vascular and Endovascular Surgery, 41, 277–293.

    Article  PubMed  Google Scholar 

  97. Graciano, M. F., Valle, M. M., Kowluru, A., et al. (2011). Regulation of insulin secretion and reactive oxygen species production by free fatty acids in pancreatic islets. Islets, 3, 213–223.

    Article  PubMed  Google Scholar 

  98. Granger, D. N., & Kvietys, P. R. (2015). Reperfusion injury and reactive oxygen species: The evolution of a concept. Redox Biology, 6, 524–551.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Grootjans, J., Lenaerts, K., Derikx, J. P., et al. (2010). Human intestinal ischemia-reperfusion-induced inflammation characterized: Experiences from a new translational model. The American Journal of Pathology, 176, 2283–2291.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Grosso, M. A., Brown, J. M., Viders, D. E., et al. (1989). Xanthine oxidase-derived oxygen radicals induce pulmonary edema via direct endothelial cell injury. The Journal of Surgical Research, 46, 355–360.

    Article  CAS  PubMed  Google Scholar 

  101. Guzman-Pruneda, F. A., Orr, Y., Trost, J. G., et al. (2016). Bronchial artery revascularization and en bloc lung transplant in children. The Journal of Heart and Lung Transplantation, 35, 122–129.

    Article  PubMed  Google Scholar 

  102. Halldorsson, A., Kronon, M., Allen, B. S., et al. (1998). Controlled reperfusion after lung ischemia: Implications for improved function after lung transplantation. The Journal of Thoracic and Cardiovascular Surgery, 115, 415–424. Discussion 424–415.

    Article  CAS  PubMed  Google Scholar 

  103. Hamacher, J., Stammberger, U., Weber, E., et al. (2009). Ebselen improves ischemia-reperfusion injury after rat lung transplantation. Lung, 187, 98–103.

    Article  CAS  PubMed  Google Scholar 

  104. Hartney, T., Birari, R., Venkataraman, S., et al. (2011). Xanthine oxidase-derived ROS upregulate Egr-1 via ERK1/2 in PA smooth muscle cells; model to test impact of extracellular ROS in chronic hypoxia. PLoS One, 6, e27531.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Hasaniya, N. W., Premaratne, S., Zhang, W. W., et al. (2011). Amelioration of ischemia-reperfusion injury in an isolated rabbit lung model using OXANOH. Vascular and Endovascular Surgery, 45, 581–591.

    Article  PubMed  Google Scholar 

  106. Heinrich, T. A., Da Silva, R. S., Miranda, K. M., et al. (2013). Biological nitric oxide signalling: Chemistry and terminology. British Journal of Pharmacology, 169, 1417–1429.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Hirata, T., Fukuse, T., Hanaoka, S., et al. (2001). Mitochondrial respiration as an early marker of viability in cardiac-arrested rat lungs. The Journal of Surgical Research, 96, 268–276.

    Article  CAS  PubMed  Google Scholar 

  108. Huttemann, M., Helling, S., Sanderson, T. H., et al. (2012). Regulation of mitochondrial respiration and apoptosis through cell signaling: Cytochrome c oxidase and cytochrome c in ischemia/reperfusion injury and inflammation. Biochimica et Biophysica Acta, 1817, 598–609.

    Article  CAS  PubMed  Google Scholar 

  109. Ignarro, L. J. (1989). Biological actions and properties of endothelium-derived nitric oxide formed and released from artery and vein. Circulation Research, 65, 1–21.

    Article  CAS  PubMed  Google Scholar 

  110. Inci, I., Erne, B., Arni, S., et al. (2010). Prevention of primary graft dysfunction in lung transplantation by N-acetylcysteine after prolonged cold ischemia. The Journal of Heart and Lung Transplantation, 29, 1293–1301.

    Article  PubMed  Google Scholar 

  111. Inci, I., Inci, D., Dutly, A., et al. (2002). Melatonin attenuates posttransplant lung ischemia-reperfusion injury. The Annals of Thoracic Surgery, 73, 220–225.

    Article  PubMed  Google Scholar 

  112. Ingec, M., Isaoglu, U., Yilmaz, M., et al. (2011). Prevention of ischemia-reperfusion injury in rat ovarian tissue with the on-off method. Journal of Physiology and Pharmacology, 62, 575–582.

    CAS  PubMed  Google Scholar 

  113. Ischiropoulos, H., Al-Mehdi, A. B., & Fisher, A. B. (1995). Reactive species in ischemic rat lung injury: Contribution of peroxynitrite. The American Journal of Physiology, 269, L158–L164.

    CAS  PubMed  Google Scholar 

  114. Javadov, S., Hunter, J. C., Barreto-Torres, G., et al. (2011). Targeting the mitochondrial permeability transition: Cardiac ischemia-reperfusion versus carcinogenesis. Cellular Physiology and Biochemistry, 27, 179–190.

    Article  CAS  PubMed  Google Scholar 

  115. Jenkins, D. (2015). Pulmonary endarterectomy: The potentially curative treatment for patients with chronic thromboembolic pulmonary hypertension. European Respiratory Review, 24, 263–271.

    Article  PubMed  Google Scholar 

  116. Jensen, P. K. (1966). Antimycin-insensitive oxidation of succinate and reduced nicotinamide-adenine dinucleotide in electron-transport particles. I. pH dependency and hydrogen peroxide formation. Biochimica et Biophysica Acta, 122, 157–166.

    Article  CAS  PubMed  Google Scholar 

  117. Jin, Y., Zhao, X., Zhang, H., et al. (2016). Modulatory effect of silymarin on pulmonary vascular dysfunction through HIF-1alpha-iNOS following rat lung ischemia-reperfusion injury. Experimental and Therapeutic Medicine, 12, 1135–1140.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Johnson, E. R., & Matthay, M. A. (2010). Acute lung injury: Epidemiology, pathogenesis, and treatment. Journal of Aerosol Medicine and Pulmonary Drug Delivery, 23, 243–252.

    Article  PubMed  PubMed Central  Google Scholar 

  119. Jonnala, R. R., & Buccafusco, J. J. (2001). Inhibition of nerve growth factor signaling by peroxynitrite. Journal of Neuroscience Research, 63, 27–34.

    Article  CAS  PubMed  Google Scholar 

  120. Jurmann, M. J., Dammenhayn, L., Schaefers, H. J., et al. (1990). Pulmonary reperfusion injury: Evidence for oxygen-derived free radical mediated damage and effects of different free radical scavengers. European Journal of Cardio-Thoracic Surgery, 4, 665–670.

    Article  CAS  PubMed  Google Scholar 

  121. Kadenbach, B., & Huttemann, M. (2015). The subunit composition and function of mammalian cytochrome c oxidase. Mitochondrion, 24, 64–76.

    Article  CAS  PubMed  Google Scholar 

  122. Kalogeris, T., Baines, C. P., Krenz, M., et al. (2012). Cell biology of ischemia/reperfusion injury. International Review of Cell and Molecular Biology, 298, 229–317.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Kalogeris, T., Bao, Y., & Korthuis, R. J. (2014). Mitochondrial reactive oxygen species: A double edged sword in ischemia/reperfusion vs preconditioning. Redox Biology, 2, 702–714.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Kamata, H., Honda, S., Maeda, S., et al. (2005). Reactive oxygen species promote TNFalpha-induced death and sustained JNK activation by inhibiting MAP kinase phosphatases. Cell, 120, 649–661.

    Article  CAS  PubMed  Google Scholar 

  125. Kaminski, A., Pohl, C. B., Sponholz, C., et al. (2004). Up-regulation of endothelial nitric oxide synthase inhibits pulmonary leukocyte migration following lung ischemia-reperfusion in mice. The American Journal of Pathology, 164, 2241–2249.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Kandilci, H. B., Gumusel, B., Topaloglu, E., et al. (2006). Effects of ischemic preconditioning on rat lung: Role of nitric oxide. Experimental Lung Research, 32, 287–303.

    Article  CAS  PubMed  Google Scholar 

  127. Karck, M., & Haverich, A. (1992). Nifedipine and diltiazem reduce pulmonary edema formation during postischemic reperfusion of the rabbit lung. Research in Experimental Medicine, 192, 137–144.

    Article  CAS  PubMed  Google Scholar 

  128. Kawasaki, H., Ikeda, K., Shigenaga, A., et al. (2011). Mass spectrometric identification of tryptophan nitration sites on proteins in peroxynitrite-treated lysates from PC12 cells. Free Radical Biology & Medicine, 50, 419–427.

    Article  CAS  Google Scholar 

  129. Kennedy, T. P., Rao, N. V., Hopkins, C., et al. (1989). Role of reactive oxygen species in reperfusion injury of the rabbit lung. The Journal of Clinical Investigation, 83, 1326–1335.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Kerr, K. M., Auger, W. R., Marsh, J. J., et al. (2012). Efficacy of methylprednisolone in preventing lung injury following pulmonary thromboendarterectomy. Chest, 141, 27–35.

    Article  CAS  PubMed  Google Scholar 

  131. Kevin, L. G., Camara, A. K., Riess, M. L., et al. (2003). Ischemic preconditioning alters real-time measure of O2 radicals in intact hearts with ischemia and reperfusion. American Journal of Physiology. Heart and Circulatory Physiology, 284, H566–H574.

    Article  CAS  PubMed  Google Scholar 

  132. Kim, H., Zhao, J., Zhang, Q., et al. (2016). deltaV1-1 reduces pulmonary ischemia reperfusion-induced lung injury by inhibiting necrosis and mitochondrial localization of PKCdelta and p53. American Journal of Transplantation, 16, 83–98.

    Article  CAS  PubMed  Google Scholar 

  133. Kinnula, V. L., Sarnesto, A., Heikkila, L., et al. (1997). Assessment of xanthine oxidase in human lung and lung transplantation. The European Respiratory Journal, 10, 676–680.

    CAS  PubMed  Google Scholar 

  134. Konior, A., Schramm, A., Czesnikiewicz-Guzik, M., et al. (2014). NADPH oxidases in vascular pathology. Antioxidants & Redox Signaling, 20, 2794–2814.

    Article  CAS  Google Scholar 

  135. Korshunov, S. S., Skulachev, V. P., & Starkov, A. A. (1997). High protonic potential actuates a mechanism of production of reactive oxygen species in mitochondria. FEBS Letters, 416, 15–18.

    Article  CAS  PubMed  Google Scholar 

  136. Kosieradzki, M., & Rowinski, W. (2008). Ischemia/reperfusion injury in kidney transplantation: Mechanisms and prevention. Transplantation Proceedings, 40, 3279–3288.

    Article  CAS  PubMed  Google Scholar 

  137. Kotoulas, C., Panagiotou, I., Tsipas, P., et al. (2014). Experimental studies in the bronchial circulation. Which is the ideal animal model? Journal of Thoracic Disease, 6, 1506–1512.

    PubMed  PubMed Central  Google Scholar 

  138. Kozower, B. D., Christofidou-Solomidou, M., Sweitzer, T. D., et al. (2003). Immunotargeting of catalase to the pulmonary endothelium alleviates oxidative stress and reduces acute lung transplantation injury. Nature Biotechnology, 21, 392–398.

    Article  CAS  PubMed  Google Scholar 

  139. Kreisel, D., & Goldstein, D. R. (2013). Innate immunity and organ transplantation: Focus on lung transplantation. Transplant International, 26, 2–10.

    Article  CAS  PubMed  Google Scholar 

  140. Lambert, A. J., & Brand, M. D. (2004). Superoxide production by NADH:Ubiquinone oxidoreductase (complex I) depends on the pH gradient across the mitochondrial inner membrane. The Biochemical Journal, 382, 511–517.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Laubach, V. E., & Sharma, A. K. (2016). Mechanisms of lung ischemia-reperfusion injury. Current Opinion in Organ Transplantation, 21, 246–252.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Laurindo, F. R., Araujo, T. L., & Abrahao, T. B. (2014). Nox NADPH oxidases and the endoplasmic reticulum. Antioxidants & Redox Signaling, 20, 2755–2775.

    Article  CAS  Google Scholar 

  143. Lechner, M., Lirk, P., & Rieder, J. (2005). Inducible nitric oxide synthase (iNOS) in tumor biology: The two sides of the same coin. Seminars in Cancer Biology, 15, 277–289.

    Article  CAS  PubMed  Google Scholar 

  144. Lee, H., Lee, Y. J., Choi, H., et al. (2009). Reactive oxygen species facilitate adipocyte differentiation by accelerating mitotic clonal expansion. The Journal of Biological Chemistry, 284, 10601–10609.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Lee, J. M., Grabb, M. C., Zipfel, G. J., et al. (2000). Brain tissue responses to ischemia. The Journal of Clinical Investigation, 106, 723–731.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Levinson, R. M., Shure, D., & Moser, K. M. (1986). Reperfusion pulmonary edema after pulmonary artery thromboendarterectomy. The American Review of Respiratory Disease, 134, 1241–1245.

    CAS  PubMed  Google Scholar 

  147. Lewis, M. S., Whatley, R. E., Cain, P., et al. (1988). Hydrogen peroxide stimulates the synthesis of platelet-activating factor by endothelium and induces endothelial cell-dependent neutrophil adhesion. The Journal of Clinical Investigation, 82, 2045–2055.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Li, Q., Spencer, N. Y., Oakley, F. D., et al. (2009). Endosomal Nox2 facilitates redox-dependent induction of NF-kappaB by TNF-alpha. Antioxidants & Redox Signaling, 11, 1249–1263.

    Article  CAS  Google Scholar 

  149. Liu, B., Tewari, A. K., Zhang, L., et al. (2009). Proteomic analysis of protein tyrosine nitration after ischemia reperfusion injury: Mitochondria as the major target. Biochimica et Biophysica Acta, 1794, 476–485.

    Article  CAS  PubMed  Google Scholar 

  150. Liu, R., Fang, X., Meng, C., et al. (2015). Lung inflation with hydrogen during the cold ischemia phase decreases lung graft injury in rats. Experimental Biology and Medicine, 240, 1214–1222.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Lockinger, A., Schutte, H., Walmrath, D., et al. (2001). Protection against gas exchange abnormalities by pre-aerosolized PGE1, iloprost and nitroprusside in lung ischemia-reperfusion. Transplantation, 71, 185–193.

    Article  CAS  PubMed  Google Scholar 

  152. Looney, M. R., & Matthay, M. A. (2006). Animal models of transfusion-related acute lung injury. Critical Care Medicine, 34, S132–S136.

    Article  PubMed  Google Scholar 

  153. Lu, L., Xu, K., Zhang, L. J., et al. (2014). Lung ischaemia-reperfusion injury in a canine model: Dual-energy CT findings with pathophysiological correlation. The British Journal of Radiology, 87, 20130716.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Lu, X. M., Zhang, G. X., Yu, Y. Q., et al. (2009). The opposite roles of nNOS in cardiac ischemia-reperfusion-induced injury and in ischemia preconditioning-induced cardioprotection in mice. The Journal of Physiological Sciences, 59, 253–262.

    Article  CAS  PubMed  Google Scholar 

  155. Lu, Y. T., Chen, P. G., & Liu, S. F. (2002). Time course of lung ischemia-reperfusion-induced ICAM-1 expression and its role in ischemia-reperfusion lung injury. Journal of Applied Physiology, 93, 620–628.

    Article  CAS  PubMed  Google Scholar 

  156. Luh, S. P., Kuo, P. H., Kuo, T. F., et al. (2007). Effects of thermal preconditioning on the ischemia-reperfusion-induced acute lung injury in minipigs. Shock, 28, 615–622.

    CAS  PubMed  Google Scholar 

  157. Luh, S. P., Tsai, C. C., Shau, W. Y., et al. (1999). Effects of gabexate mesilate (FOY) on ischemia-reperfusion-induced acute lung injury in dogs. The Journal of Surgical Research, 87, 152–163.

    Article  CAS  PubMed  Google Scholar 

  158. Luo, S., Lei, H., Qin, H., et al. (2014). Molecular mechanisms of endothelial NO synthase uncoupling. Current Pharmaceutical Design, 20, 3548–3553.

    Article  CAS  PubMed  Google Scholar 

  159. Lyle, A. N., Deshpande, N. N., Taniyama, Y., et al. (2009). Poldip2, a novel regulator of Nox4 and cytoskeletal integrity in vascular smooth muscle cells. Circulation Research, 105, 249–259.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Lynch, M. J., Grum, C. M., Gallagher, K. P., et al. (1988). Xanthine oxidase inhibition attenuates ischemic-reperfusion lung injury. The Journal of Surgical Research, 44, 538–544.

    Article  CAS  PubMed  Google Scholar 

  161. Machuca, T. N., & Cypel, M. (2014). Ex vivo lung perfusion. Journal of Thoracic Disease, 6, 1054–1062.

    PubMed  PubMed Central  Google Scholar 

  162. Maia, L., Duarte, R. O., Ponces-Freire, A., et al. (2007). NADH oxidase activity of rat and human liver xanthine oxidoreductase: Potential role in superoxide production. Journal of Biological Inorganic Chemistry, 12, 777–787.

    Article  CAS  PubMed  Google Scholar 

  163. Majmundar, A. J., Wong, W. J., & Simon, M. C. (2010). Hypoxia-inducible factors and the response to hypoxic stress. Molecular Cell, 40, 294–309.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  164. Malczyk, M., Veith, C., Schermuly, R. T., et al. (2016). NADPH oxidases-do they play a role in TRPC regulation under hypoxia? Pflugers Archiv: European Journal of Physiology, 468, 23–41.

    Article  CAS  PubMed  Google Scholar 

  165. Marozkina, N. V., & Gaston, B. (2015). Nitrogen chemistry and lung physiology. Annual Review of Physiology, 77, 431–452.

    Article  CAS  PubMed  Google Scholar 

  166. Matsushima, S., Kuroda, J., Ago, T., et al. (2013). Increased oxidative stress in the nucleus caused by Nox4 mediates oxidation of HDAC4 and cardiac hypertrophy. Circulation Research, 112, 651–663.

    Article  CAS  PubMed  Google Scholar 

  167. Matute-Bello, G., Frevert, C. W., & Martin, T. R. (2008). Animal models of acute lung injury. American Journal of Physiology. Lung Cellular and Molecular Physiology, 295, L379–L399.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  168. Mccord, J. M. (1985). Oxygen-derived free radicals in postischemic tissue injury. The New England Journal of Medicine, 312, 159–163.

    Article  CAS  PubMed  Google Scholar 

  169. Mccullagh, A., Rosenthal, M., Wanner, A., et al. (2010). The bronchial circulation—Worth a closer look: A review of the relationship between the bronchial vasculature and airway inflammation. Pediatric Pulmonology, 45, 1–13.

    Article  PubMed  Google Scholar 

  170. Mclaughlin, R. F., Jr. (1983). Bronchial artery distribution in various mammals and in humans. The American Review of Respiratory Disease, 128, S57–S58.

    PubMed  Google Scholar 

  171. Meischl, C., Krijnen, P. A., Sipkens, J. A., et al. (2006). Ischemia induces nuclear NOX2 expression in cardiomyocytes and subsequently activates apoptosis. Apoptosis, 11, 913–921.

    Article  CAS  PubMed  Google Scholar 

  172. Miller, F. J., Jr., Chu, X., Stanic, B., et al. (2010). A differential role for endocytosis in receptor-mediated activation of Nox1. Antioxidants & Redox Signaling, 12, 583–593.

    Article  CAS  Google Scholar 

  173. Mittal, M., Roth, M., Konig, P., et al. (2007). Hypoxia-dependent regulation of nonphagocytic NADPH oxidase subunit NOX4 in the pulmonary vasculature. Circulation Research, 101, 258–267.

    Article  CAS  PubMed  Google Scholar 

  174. Montezano, A. C., & Touyz, R. M. (2014). Reactive oxygen species, vascular Noxs, and hypertension: Focus on translational and clinical research. Antioxidants & Redox Signaling, 20, 164–182.

    Article  CAS  Google Scholar 

  175. Mujoo, K., Sharin, V. G., Martin, E., et al. (2010). Role of soluble guanylyl cyclase-cyclic GMP signaling in tumor cell proliferation. Nitric Oxide, 22, 43–50.

    Article  CAS  PubMed  Google Scholar 

  176. Muller, F. L., Liu, Y., & Van Remmen, H. (2004). Complex III releases superoxide to both sides of the inner mitochondrial membrane. The Journal of Biological Chemistry, 279, 49064–49073.

    Article  CAS  PubMed  Google Scholar 

  177. Murphy, M. P. (2009). How mitochondria produce reactive oxygen species. The Biochemical Journal, 417, 1–13.

    Article  CAS  PubMed  Google Scholar 

  178. Murray, J. F. (2011). Pulmonary edema: Pathophysiology and diagnosis. The International Journal of Tuberculosis and Lung Disease, 15, 155–160.

    CAS  PubMed  Google Scholar 

  179. Naidu, B. V., Fraga, C., Salzman, A. L., et al. (2003). Critical role of reactive nitrogen species in lung ischemia-reperfusion injury. The Journal of Heart and Lung Transplantation, 22, 784–793.

    Article  PubMed  Google Scholar 

  180. Nakamura, T., Vollmar, B., Winning, J., et al. (2001). Heparin and the nonanticoagulant N-acetyl heparin attenuate capillary no-reflow after normothermic ischemia of the lung. The Annals of Thoracic Surgery, 72, 1183–1188. Discussion 1188–1189.

    Article  CAS  PubMed  Google Scholar 

  181. Nathan, S. D. (2015). The future of lung transplantation. Chest, 147, 309–316.

    Article  PubMed  Google Scholar 

  182. Nayernia, Z., Jaquet, V., & Krause, K. H. (2014). New insights on NOX enzymes in the central nervous system. Antioxidants & Redox Signaling, 20, 2815–2837.

    Article  CAS  Google Scholar 

  183. Ng, C. S., Wan, S., & Yim, A. P. (2005). Pulmonary ischaemia-reperfusion injury: Role of apoptosis. The European Respiratory Journal, 25, 356–363.

    Article  CAS  PubMed  Google Scholar 

  184. Ni, R., Cao, T., Xiong, S., et al. (2016). Therapeutic inhibition of mitochondrial reactive oxygen species with mito-TEMPO reduces diabetic cardiomyopathy. Free Radical Biology & Medicine, 90, 12–23.

    Article  CAS  Google Scholar 

  185. Norgaard, M. A., Olsen, P. S., Svendsen, U. G., et al. (1996). Revascularization of the bronchial arteries in lung transplantation: An overview. The Annals of Thoracic Surgery, 62, 1215–1221.

    Article  CAS  PubMed  Google Scholar 

  186. Nour, M., Scalzo, F., & Liebeskind, D. S. (2013). Ischemia-reperfusion injury in stroke. Interventional Neurology, 1, 185–199.

    Article  PubMed  PubMed Central  Google Scholar 

  187. Novelli, G. P., Adembri, C., Gandini, E., et al. (1997). Vitamin E protects human skeletal muscle from damage during surgical ischemia-reperfusion. American Journal of Surgery, 173, 206–209.

    Article  CAS  PubMed  Google Scholar 

  188. Nowak, K., Weih, S., Metzger, R., et al. (2007). Immunotargeting of catalase to lung endothelium via anti-angiotensin-converting enzyme antibodies attenuates ischemia-reperfusion injury of the lung in vivo. American Journal of Physiology. Lung Cellular and Molecular Physiology, 293, L162–L169.

    Article  CAS  PubMed  Google Scholar 

  189. Okada, M., Yamashita, C., Okada, M., et al. (1995). Contribution of endothelin-1 to warm ischemia/reperfusion injury of the rat lung. American Journal of Respiratory and Critical Care Medicine, 152, 2105–2110.

    Article  CAS  PubMed  Google Scholar 

  190. Osiro, S., Wear, C., Hudson, R., et al. (2012). A friend to the airways: A review of the emerging clinical importance of the bronchial arterial circulation. Surgical and Radiologic Anatomy, 34, 791–798.

    Article  PubMed  Google Scholar 

  191. Ovechkin, A. V., Lominadze, D., Sedoris, K. C., et al. (2005). Inhibition of inducible nitric oxide synthase attenuates platelet adhesion in subpleural arterioles caused by lung ischemia-reperfusion in rabbits. Journal of Applied Physiology, 99, 2423–2432.

    Article  CAS  PubMed  Google Scholar 

  192. Ovechkin, A. V., Lominadze, D., Sedoris, K. C., et al. (2007). Lung ischemia-reperfusion injury: Implications of oxidative stress and platelet-arteriolar wall interactions. Archives of Physiology and Biochemistry, 113, 1–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  193. Ozbek, O., Altintas, R., Polat, A., et al. (2015). The protective effect of apocynin on testicular ischemia-reperfusion injury. The Journal of Urology, 193, 1417–1422.

    Article  CAS  PubMed  Google Scholar 

  194. Pacher, P., Nivorozhkin, A., & Szabo, C. (2006). Therapeutic effects of xanthine oxidase inhibitors: Renaissance half a century after the discovery of allopurinol. Pharmacological Reviews, 58, 87–114.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  195. Pak, O., Sommer, N., Hoeres, T., et al. (2013). Mitochondrial hyperpolarization in pulmonary vascular remodeling. Mitochondrial uncoupling protein deficiency as disease model. American Journal of Respiratory Cell and Molecular Biology, 49, 358–367.

    Article  CAS  PubMed  Google Scholar 

  196. Palazzo, R., Hamvas, A., Shuman, T., et al. (1992). Injury in nonischemic lung after unilateral pulmonary ischemia with reperfusion. Journal of Applied Physiology, 72, 612–620.

    Article  CAS  PubMed  Google Scholar 

  197. Pan, J., Konstas, A. A., Bateman, B., et al. (2007). Reperfusion injury following cerebral ischemia: Pathophysiology, MR imaging, and potential therapies. Neuroradiology, 49, 93–102.

    Article  PubMed  Google Scholar 

  198. Panday, A., Sahoo, M. K., Osorio, D., et al. (2015). NADPH oxidases: An overview from structure to innate immunity-associated pathologies. Cellular & Molecular Immunology, 12, 5–23.

    Article  CAS  Google Scholar 

  199. Patel, R. P., Mcandrew, J., Sellak, H., et al. (1999). Biological aspects of reactive nitrogen species. Biochimica et Biophysica Acta, 1411, 385–400.

    Article  CAS  PubMed  Google Scholar 

  200. Pell, V. R., Chouchani, E. T., Murphy, M. P., et al. (2016). Moving forwards by blocking back-flow: The Yin and Yang of MI therapy. Circulation Research, 118, 898–906.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  201. Pfeffer, K. D., Huecksteadt, T. P., & Hoidal, J. R. (1994). Xanthine dehydrogenase and xanthine oxidase activity and gene expression in renal epithelial cells. Cytokine and steroid regulation. Journal of Immunology, 153, 1789–1797.

    CAS  Google Scholar 

  202. Pickford, M. A., Gower, J. D., Dore, C., et al. (1990). Lipid peroxidation and ultrastructural changes in rat lung isografts after single-passage organ flush and 48-hour cold storage with and without one-hour reperfusion in vivo. Transplantation, 50, 210–218.

    Article  CAS  PubMed  Google Scholar 

  203. Powers, K. A., Szaszi, K., Khadaroo, R. G., et al. (2006). Oxidative stress generated by hemorrhagic shock recruits Toll-like receptor 4 to the plasma membrane in macrophages. The Journal of Experimental Medicine, 203, 1951–1961.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  204. Prakash, A., Mesa, K. R., Wilhelmsen, K., et al. (2012). Alveolar macrophages and Toll-like receptor 4 mediate ventilated lung ischemia reperfusion injury in mice. Anesthesiology, 117, 822–835.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  205. Prieto-Moure, B., Caraben-Redano, A., Aliena-Valero, A., et al. (2014). Allopurinol in renal ischemia. Journal of Investigative Surgery, 27, 304–316.

    Article  PubMed  Google Scholar 

  206. Pump, K. K. (1972). Distribution of bronchial arteries in the human lung. Chest, 62, 447–451.

    Article  CAS  PubMed  Google Scholar 

  207. Qiu, W., Gu, H., Zheng, L., et al. (2008). Pretreatment with edaravone reduces lung mitochondrial damage in an infant rabbit ischemia-reperfusion model. Journal of Pediatric Surgery, 43, 2053–2060.

    Article  PubMed  Google Scholar 

  208. Ravnic, D. J., Konerding, M. A., Pratt, J. P., et al. (2007). The murine bronchopulmonary microcirculation in hapten-induced inflammation. The Journal of Thoracic and Cardiovascular Surgery, 133, 97–103.

    Article  PubMed  Google Scholar 

  209. Razi, S. S., Latif, M. J., Li, X., et al. (2011). Dietary flaxseed protects against lung ischemia reperfusion injury via inhibition of apoptosis and inflammation in a murine model. The Journal of Surgical Research, 171, e113–e121.

    Article  CAS  PubMed  Google Scholar 

  210. Rolfe, D. F., & Brown, G. C. (1997). Cellular energy utilization and molecular origin of standard metabolic rate in mammals. Physiological Reviews, 77, 731–758.

    CAS  PubMed  Google Scholar 

  211. Sakuma, T., Takahashi, K., Ohya, N., et al. (1999). Ischemia-reperfusion lung injury in rabbits: Mechanisms of injury and protection. The American Journal of Physiology, 276, L137–L145.

    CAS  PubMed  Google Scholar 

  212. Salatti Ferrari, R., Da Rosa, D. P., Forgiarini, L. F., et al. (2012). Oxidative stress and pulmonary changes in experimental liver cirrhosis. Oxidative Medicine and Cellular Longevity, 2012, 486190.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  213. Sanders, S. A., Eisenthal, R., & Harrison, R. (1997). NADH oxidase activity of human xanthine oxidoreductase—Generation of superoxide anion. European Journal of Biochemistry, 245, 541–548.

    Article  CAS  PubMed  Google Scholar 

  214. Sanders, S. P., Bassett, D. J., Harrison, S. J., et al. (2000). Measurements of free radicals in isolated, ischemic lungs and lung mitochondria. Lung, 178, 105–118.

    Article  CAS  PubMed  Google Scholar 

  215. Sanderson, T. H., Reynolds, C. A., Kumar, R., et al. (2013). Molecular mechanisms of ischemia-reperfusion injury in brain: Pivotal role of the mitochondrial membrane potential in reactive oxygen species generation. Molecular Neurobiology, 47, 9–23.

    Article  CAS  PubMed  Google Scholar 

  216. Santos, A. I., Martinez-Ruiz, A., & Araujo, I. M. (2015). S-nitrosation and neuronal plasticity. British Journal of Pharmacology, 172, 1468–1478.

    Article  CAS  PubMed  Google Scholar 

  217. Santus, P., Corsico, A., Solidoro, P., et al. (2014). Oxidative stress and respiratory system: Pharmacological and clinical reappraisal of N-acetylcysteine. COPD, 11, 705–717.

    Article  PubMed  PubMed Central  Google Scholar 

  218. Sasaki, S., Yasuda, K., Mccully, J. D., et al. (1999). Calcium channel blocker enhances lung preservation. The Journal of Heart and Lung Transplantation, 18, 127–132.

    Article  CAS  PubMed  Google Scholar 

  219. Satoh, M., Fujimoto, S., Haruna, Y., et al. (2005). NAD(P)H oxidase and uncoupled nitric oxide synthase are major sources of glomerular superoxide in rats with experimental diabetic nephropathy. American Journal of Physiology. Renal Physiology, 288, F1144–F1152.

    Article  CAS  PubMed  Google Scholar 

  220. Savai, R., Wolf, J. C., Greschus, S., et al. (2005). Analysis of tumor vessel supply in Lewis lung carcinoma in mice by fluorescent microsphere distribution and imaging with micro- and flat-panel computed tomography. The American Journal of Pathology, 167, 937–946.

    Article  PubMed  PubMed Central  Google Scholar 

  221. Schieber, M., & Chandel, N. S. (2014). ROS function in redox signaling and oxidative stress. Current Biology, 24, R453–R462.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  222. Schofield, Z. V., Woodruff, T. M., Halai, R., et al. (2013). Neutrophils—A key component of ischemia-reperfusion injury. Shock, 40, 463–470.

    Article  CAS  PubMed  Google Scholar 

  223. Schroder, K. (2014). NADPH oxidases in redox regulation of cell adhesion and migration. Antioxidants & Redox Signaling, 20, 2043–2058.

    Article  CAS  Google Scholar 

  224. Sedoris, K. C., Gozal, E., Ovechkin, A. V., et al. (2012). Interplay of endothelial and inducible nitric oxide synthases modulates the vascular response to ischaemia-reperfusion in the rabbit lung. Acta Physiologica, 204, 331–343.

    Article  CAS  PubMed  Google Scholar 

  225. Seifert, E. L., Estey, C., Xuan, J. Y., et al. (2010). Electron transport chain-dependent and -independent mechanisms of mitochondrial H2O2 emission during long-chain fatty acid oxidation. The Journal of Biological Chemistry, 285, 5748–5758.

    Article  CAS  PubMed  Google Scholar 

  226. Sepehr, R., Staniszewski, K., Maleki, S., et al. (2012). Optical imaging of tissue mitochondrial redox state in intact rat lungs in two models of pulmonary oxidative stress. Journal of Biomedical Optics, 17, 046010.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  227. Sharma, A. K., Fernandez, L. G., Awad, A. S., et al. (2007). Proinflammatory response of alveolar epithelial cells is enhanced by alveolar macrophage-produced TNF-alpha during pulmonary ischemia-reperfusion injury. American Journal of Physiology. Lung Cellular and Molecular Physiology, 293, L105–L113.

    Article  CAS  PubMed  Google Scholar 

  228. Sharma, A. K., Lapar, D. J., Stone, M. L., et al. (2016). NOX2 activation of natural killer T cells is blocked by the adenosine A2A receptor to inhibit lung ischemia-reperfusion injury. American Journal of Respiratory and Critical Care Medicine, 193, 988–999.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  229. Sherman, T. S., Chen, Z., Yuhanna, I. S., et al. (1999). Nitric oxide synthase isoform expression in the developing lung epithelium. The American Journal of Physiology, 276, L383–L390.

    CAS  PubMed  Google Scholar 

  230. Shimamoto, A., Pohlman, T. H., Shomura, S., et al. (2006). Toll-like receptor 4 mediates lung ischemia-reperfusion injury. The Annals of Thoracic Surgery, 82, 2017–2023.

    Article  PubMed  Google Scholar 

  231. Shinohara, M., Shang, W. H., Kubodera, M., et al. (2007). Nox1 redox signaling mediates oncogenic Ras-induced disruption of stress fibers and focal adhesions by down-regulating Rho. The Journal of Biological Chemistry, 282, 17640–17648.

    Article  CAS  PubMed  Google Scholar 

  232. Short, J. D., Downs, K., Tavakoli, S., et al. (2016). Protein thiol redox signaling in monocytes and macrophages. Antioxidants & Redox Signaling, 25(15), 816–835.

    Article  CAS  Google Scholar 

  233. Simon Adiego, C., Gonzalez-Casaurran, G., Azcarate Perea, L., et al. (2011). Experimental Swine lung autotransplant model to study lung ischemia-reperfusion injury. Archivos de Bronconeumologia, 47, 283–289.

    Article  PubMed  Google Scholar 

  234. Smail, H., Baste, J. M., Gay, A., et al. (2016). Role of inflammatory cells and adenosine in lung ischemia reoxygenation injury using a model of lung donation after cardiac death. Experimental Lung Research, 42, 131–141.

    Article  CAS  PubMed  Google Scholar 

  235. Smith, R. A., & Murphy, M. P. (2010). Animal and human studies with the mitochondria-targeted antioxidant MitoQ. Annals of the New York Academy of Sciences, 1201, 96–103.

    Article  CAS  PubMed  Google Scholar 

  236. Sommer, N., Dietrich, A., Schermuly, R. T., et al. (2008). Regulation of hypoxic pulmonary vasoconstriction: Basic mechanisms. The European Respiratory Journal, 32, 1639–1651.

    Article  CAS  PubMed  Google Scholar 

  237. Sommer, N., Strielkov, I., Pak, O., et al. (2016). Oxygen sensing and signal transduction in hypoxic pulmonary vasoconstriction. The European Respiratory Journal, 47, 288–303.

    Article  CAS  PubMed  Google Scholar 

  238. Sommer, S. P., Sommer, S., Sinha, B., et al. (2011). Ischemia-reperfusion injury-induced pulmonary mitochondrial damage. The Journal of Heart and Lung Transplantation, 30, 811–818.

    Article  PubMed  Google Scholar 

  239. Suda, T., Mora, B. N., D’Ovidio, F., et al. (2000). In vivo adenovirus-mediated endothelial nitric oxide synthase gene transfer ameliorates lung allograft ischemia-reperfusion injury. The Journal of Thoracic and Cardiovascular Surgery, 119, 297–304.

    Article  CAS  PubMed  Google Scholar 

  240. Sugimoto, R., Okamoto, T., Nakao, A., et al. (2012). Nitrite reduces acute lung injury and improves survival in a rat lung transplantation model. American Journal of Transplantation, 12, 2938–2948.

    Article  CAS  PubMed  Google Scholar 

  241. Suzuki, Y., Cantu, E., & Christie, J. D. (2013). Primary graft dysfunction. Seminars in Respiratory and Critical Care Medicine, 34, 305–319.

    Article  PubMed  PubMed Central  Google Scholar 

  242. Tadros, T., Traber, D. L., & Herndon, D. N. (2000). Trauma- and sepsis-induced hepatic ischemia and reperfusion injury: Role of angiotensin II. Archives of Surgery, 135, 766–772.

    Article  CAS  PubMed  Google Scholar 

  243. Tano, J. Y., & Gollasch, M. (2014). Hypoxia and ischemia-reperfusion: A BiK contribution? American Journal of Physiology. Heart and Circulatory Physiology, 307, H811–H817.

    Article  CAS  PubMed  Google Scholar 

  244. Templeton, A. W., & Garrotto, L. J. (1967). Acquired extracardiac causes of pulmonary ischemia. Diseases of the Chest, 51, 166–171.

    Article  CAS  PubMed  Google Scholar 

  245. Terada, L. S., Dormish, J. J., Shanley, P. F., et al. (1992). Circulating xanthine oxidase mediates lung neutrophil sequestration after intestinal ischemia-reperfusion. The American Journal of Physiology, 263, L394–L401.

    CAS  PubMed  Google Scholar 

  246. Terada, L. S., Piermattei, D., Shibao, G. N., et al. (1997). Hypoxia regulates xanthine dehydrogenase activity at pre- and posttranslational levels. Archives of Biochemistry and Biophysics, 348, 163–168.

    Article  CAS  PubMed  Google Scholar 

  247. Tiruppathi, C., Ahmmed, G. U., Vogel, S. M., et al. (2006). Ca2+ signaling, TRP channels, and endothelial permeability. Microcirculation, 13, 693–708.

    Article  CAS  PubMed  Google Scholar 

  248. Tiruppathi, C., Freichel, M., Vogel, S. M., et al. (2002). Impairment of store-operated Ca2+ entry in TRPC4(−/−) mice interferes with increase in lung microvascular permeability. Circulation Research, 91, 70–76.

    Article  CAS  PubMed  Google Scholar 

  249. Tong, M. Z., Johnston, D. R., & Pettersson, G. B. (2015). The role of bronchial artery revascularization in lung transplantation. Thoracic Surgery Clinics, 25, 77–85.

    Article  PubMed  Google Scholar 

  250. Touyz, R. M., Briones, A. M., Sedeek, M., et al. (2011). NOX isoforms and reactive oxygen species in vascular health. Molecular Interventions, 11, 27–35.

    Article  CAS  PubMed  Google Scholar 

  251. Trachiotis, G. D., Vricella, L. A., Aaron, B. L., et al. (1997). As originally published in 1988: Reexpansion pulmonary edema. Updated in 1997. The Annals of Thoracic Surgery, 63, 1206–1207.

    Article  CAS  PubMed  Google Scholar 

  252. Tuo, J., Liu, L., Poulsen, H. E., et al. (2000). Importance of guanine nitration and hydroxylation in DNA in vitro and in vivo. Free Radical Biology & Medicine, 29, 147–155.

    Article  CAS  Google Scholar 

  253. Turan, N. N., & Demiryurek, A. T. (2006). Preconditioning effects of peroxynitrite in the rat lung. Pharmacological Research, 54, 380–388.

    Article  CAS  PubMed  Google Scholar 

  254. Turan, N. N., Yildiz, G., Gumusel, B., et al. (2008). Ischemic and peroxynitrite preconditioning effects in chronic hypoxic rat lung. Experimental Lung Research, 34, 325–341.

    Article  CAS  PubMed  Google Scholar 

  255. Ueyama, T., Sakuma, M., Ninoyu, Y., et al. (2015). The extracellular A-loop of dual oxidases affects the specificity of reactive oxygen species release. The Journal of Biological Chemistry, 290, 6495–6506.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  256. Van Klaveren, R. J., Roelant, C., Boogaerts, M., et al. (1997). Involvement of an NAD(P)H oxidase-like enzyme in superoxide anion and hydrogen peroxide generation by rat type II cells. Thorax, 52, 465–471.

    Article  PubMed  PubMed Central  Google Scholar 

  257. Veit, F., Pak, O., Brandes, R. P., et al. (2015). Hypoxia-dependent reactive oxygen species signaling in the pulmonary circulation: Focus on ion channels. Antioxidants & Redox Signaling, 22, 537–552.

    Article  CAS  Google Scholar 

  258. Viner, R. I., Williams, T. D., & Schoneich, C. (1999). Peroxynitrite modification of protein thiols: Oxidation, nitrosylation, and S-glutathiolation of functionally important cysteine residue(s) in the sarcoplasmic reticulum Ca-ATPase. Biochemistry, 38, 12408–12415.

    Article  CAS  PubMed  Google Scholar 

  259. Wagner, E. M., & Foster, W. M. (1996). Importance of airway blood flow on particle clearance from the lung. Journal of Applied Physiology, 81, 1878–1883.

    CAS  PubMed  Google Scholar 

  260. Walker, C. M., Rosado-De-Christenson, M. L., Martinez-Jimenez, S., et al. (2015). Bronchial arteries: Anatomy, function, hypertrophy, and anomalies. Radiographics, 35, 32–49.

    Article  PubMed  Google Scholar 

  261. Ware, L. B., Golden, J. A., Finkbeiner, W. E., et al. (1999). Alveolar epithelial fluid transport capacity in reperfusion lung injury after lung transplantation. American Journal of Respiratory and Critical Care Medicine, 159, 980–988.

    Article  CAS  PubMed  Google Scholar 

  262. Waypa, G. B., Marks, J. D., Guzy, R. D., et al. (2013). Superoxide generated at mitochondrial complex III triggers acute responses to hypoxia in the pulmonary circulation. American Journal of Respiratory and Critical Care Medicine, 187, 424–432.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  263. Waypa, G. B., Smith, K. A., & Schumacker, P. T. (2016). O2 sensing, mitochondria and ROS signaling: The fog is lifting. Molecular Aspects of Medicine, 47-48, 76–89.

    Article  CAS  PubMed  Google Scholar 

  264. Weiss, E. S., Champion, H. C., Williams, J. A., et al. (2009). Long-acting oral phosphodiesterase inhibition preconditions against reperfusion injury in an experimental lung transplantation model. The Journal of Thoracic and Cardiovascular Surgery, 137, 1249–1257.

    Article  PubMed  Google Scholar 

  265. Weissmann, N., Sydykov, A., Kalwa, H., et al. (2012). Activation of TRPC6 channels is essential for lung ischaemia-reperfusion induced oedema in mice. Nature Communications, 3, 649.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  266. West, A. R., & Tseng, K. Y. (2011). Nitric oxide-soluble guanylyl cyclase-cyclic GMP signaling in the striatum: New targets for the treatment of Parkinson’s disease? Frontiers in Systems Neuroscience, 5, 55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  267. Weyker, P. D., Webb, C. A., Kiamanesh, D., et al. (2013). Lung ischemia reperfusion injury: A bench-to-bedside review. Seminars in Cardiothoracic and Vascular Anesthesia, 17, 28–43.

    Article  PubMed  Google Scholar 

  268. Wong, C. M., Bansal, G., Pavlickova, L., et al. (2013). Reactive oxygen species and antioxidants in pulmonary hypertension. Antioxidants & Redox Signaling, 18, 1789–1796.

    Article  CAS  Google Scholar 

  269. Wright, H. L., Moots, R. J., Bucknall, R. C., et al. (2010). Neutrophil function in inflammation and inflammatory diseases. Rheumatology, 49, 1618–1631.

    Article  CAS  PubMed  Google Scholar 

  270. Wu, J. X., Zhu, H. W., Chen, X., et al. (2014). Inducible nitric oxide synthase inhibition reverses pulmonary arterial dysfunction in lung transplantation. Inflammation Research, 63, 609–618.

    Article  CAS  PubMed  Google Scholar 

  271. Xia, Y., & Zweier, J. L. (1997). Superoxide and peroxynitrite generation from inducible nitric oxide synthase in macrophages. Proceedings of the National Academy of Sciences of the United States of America, 94, 6954–6958.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  272. Xu, K. Y., Huso, D. L., Dawson, T. M., et al. (1999). Nitric oxide synthase in cardiac sarcoplasmic reticulum. Proceedings of the National Academy of Sciences of the United States of America, 96, 657–662.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  273. Yang, Q., He, G. W., Underwood, M. J., et al. (2016). Cellular and molecular mechanisms of endothelial ischemia/reperfusion injury: Perspectives and implications for postischemic myocardial protection. American Journal of Translational Research, 8, 765–777.

    PubMed  PubMed Central  Google Scholar 

  274. Yang, Z., Sharma, A. K., Linden, J., et al. (2009). CD4+ T lymphocytes mediate acute pulmonary ischemia-reperfusion injury. The Journal of Thoracic and Cardiovascular Surgery, 137, 695–702. Discussion 702.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  275. Yang, Z., Sharma, A. K., Marshall, M., et al. (2009). NADPH oxidase in bone marrow-derived cells mediates pulmonary ischemia-reperfusion injury. American Journal of Respiratory Cell and Molecular Biology, 40, 375–381.

    Article  CAS  PubMed  Google Scholar 

  276. Yeh, D. Y., Fu, Y. H., Yang, Y. C., et al. (2014). Resveratrol alleviates lung ischemia and reperfusion-induced pulmonary capillary injury through modulating pulmonary mitochondrial metabolism. Transplantation Proceedings, 46, 1131–1134.

    Article  CAS  PubMed  Google Scholar 

  277. Yellon, D. M., & Baxter, G. F. (2000). Protecting the ischaemic and reperfused myocardium in acute myocardial infarction: Distant dream or near reality? Heart, 83, 381–387.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  278. Yellon, D. M., & Hausenloy, D. J. (2007). Myocardial reperfusion injury. The New England Journal of Medicine, 357, 1121–1135.

    Article  CAS  PubMed  Google Scholar 

  279. Yokoyama, Y., Beckman, J. S., Beckman, T. K., et al. (1990). Circulating xanthine oxidase: Potential mediator of ischemic injury. The American Journal of Physiology, 258, G564–G570.

    CAS  PubMed  Google Scholar 

  280. Yoo, D. H., Yoon, C. J., Kang, S. G., et al. (2011). Bronchial and nonbronchial systemic artery embolization in patients with major hemoptysis: Safety and efficacy of N-butyl cyanoacrylate. AJR. American Journal of Roentgenology, 196, W199–W204.

    Article  PubMed  Google Scholar 

  281. Yoshida, T., Watanabe, M., Engelman, D. T., et al. (1996). Transgenic mice overexpressing glutathione peroxidase are resistant to myocardial ischemia reperfusion injury. Journal of Molecular and Cellular Cardiology, 28, 1759–1767.

    Article  CAS  PubMed  Google Scholar 

  282. Youn, J. Y., Gao, L., & Cai, H. (2012). The p47phox- and NADPH oxidase organiser 1 (NOXO1)-dependent activation of NADPH oxidase 1 (NOX1) mediates endothelial nitric oxide synthase (eNOS) uncoupling and endothelial dysfunction in a streptozotocin-induced murine model of diabetes. Diabetologia, 55, 2069–2079.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  283. Yusen, R. D., Edwards, L. B., Kucheryavaya, A. Y., et al. (2015). The registry of the International Society for Heart and Lung Transplantation: Thirty-second official adult lung and heart-lung transplantation report—2015; focus theme: Early graft failure. The Journal of Heart and Lung Transplantation, 34, 1264–1277.

    Article  PubMed  Google Scholar 

  284. Zangar, R. C., Davydov, D. R., & Verma, S. (2004). Mechanisms that regulate production of reactive oxygen species by cytochrome P450. Toxicology and Applied Pharmacology, 199, 316–331.

    Article  CAS  PubMed  Google Scholar 

  285. Zanotti, G., Casiraghi, M., Abano, J. B., et al. (2009). Novel critical role of Toll-like receptor 4 in lung ischemia-reperfusion injury and edema. American Journal of Physiology. Lung Cellular and Molecular Physiology, 297, L52–L63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  286. Zhang, Q., Church, J. E., Jagnandan, D., et al. (2006). Functional relevance of Golgi- and plasma membrane-localized endothelial NO synthase in reconstituted endothelial cells. Arteriosclerosis, Thrombosis, and Vascular Biology, 26, 1015–1021.

    Article  CAS  PubMed  Google Scholar 

  287. Zhang, Q., Matsuzaki, I., Chatterjee, S., et al. (2005). Activation of endothelial NADPH oxidase during normoxic lung ischemia is KATP channel dependent. American Journal of Physiology. Lung Cellular and Molecular Physiology, 289, L954–L961.

    Article  CAS  PubMed  Google Scholar 

  288. Zhang, Y. X., Fan, H., Shi, Y., et al. (2010). Prevention of lung ischemia-reperfusion injury by short hairpin RNA-mediated caspase-3 gene silencing. The Journal of Thoracic and Cardiovascular Surgery, 139, 758–764.

    Article  CAS  PubMed  Google Scholar 

  289. Zhang, Z., Blake, D. R., Stevens, C. R., et al. (1998). A reappraisal of xanthine dehydrogenase and oxidase in hypoxic reperfusion injury: The role of NADH as an electron donor. Free Radical Research, 28, 151–164.

    Article  CAS  PubMed  Google Scholar 

  290. Zhao, G., Al-Mehdi, A. B., & Fisher, A. B. (1997). Anoxia-reoxygenation versus ischemia in isolated rat lungs. The American Journal of Physiology, 273, L1112–L1117.

    CAS  PubMed  Google Scholar 

  291. Zhao, Q., Wu, J., Hua, Q., et al. (2016). Resolvin D1 mitigates energy metabolism disorder after ischemia-reperfusion of the rat lung. Journal of Translational Medicine, 14, 81.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  292. Zhou, T., Chuang, C. C., & Zuo, L. (2015). Molecular characterization of reactive oxygen species in myocardial ischemia-reperfusion injury. BioMed Research International, 2015, 864946.

    PubMed  PubMed Central  Google Scholar 

  293. Zhu, X., & Zuo, L. (2013). Characterization of oxygen radical formation mechanism at early cardiac ischemia. Cell Death & Disease, 4, e787.

    Article  CAS  Google Scholar 

  294. Zulueta, J. J., Yu, F. S., Hertig, I. A., et al. (1995). Release of hydrogen peroxide in response to hypoxia-reoxygenation: Role of an NAD(P)H oxidase-like enzyme in endothelial cell plasma membrane. American Journal of Respiratory Cell and Molecular Biology, 12, 41–49.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Norbert Weissmann .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Pak, O. et al. (2017). Lung Ischaemia–Reperfusion Injury: The Role of Reactive Oxygen Species. In: Wang, YX. (eds) Pulmonary Vasculature Redox Signaling in Health and Disease. Advances in Experimental Medicine and Biology, vol 967. Springer, Cham. https://doi.org/10.1007/978-3-319-63245-2_12

Download citation

Publish with us

Policies and ethics