Skip to main content

Optimized Management for Photovoltaic Applications Based on LEDs by Fuzzy Logic Control and Maximum Power Point Tracking

  • Conference paper
  • First Online:
Nearly Zero Energy Communities (CSE 2017)

Part of the book series: Springer Proceedings in Energy ((SPE))

Included in the following conference series:

Abstract

This work takes into account the implementation and analysis of a Fuzzy Logic Controller (FLC) based on Maximum Power Point Tracking (MPPT), in order to optimize the output parameters and efficiency of a photovoltaic system (PV), as well as its integration in specific applications of LED lighting. The obtained results prove the effectiveness of the FLC and MPPT able to reduce fluctuations in terms of output parameters and to have a quick response for electrical load against variations of solar radiation. By this approach the complex PV system behavior was analyzed on short, medium and long term.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Coyle, E.D., Simmons, P.A.: Understanding the Global Energy Crisis. Prdue University Press, Indiana (2014)

    Book  Google Scholar 

  2. Fara, L., Yamaguchi, M.: Advanced Solar Cell Materials, Technology, Modelling, and Simulation. IGI Global Publishing House, USA (2013). doi:10.4018/978-1-4666-1927-2

    Book  Google Scholar 

  3. Sterian, P.E.: Photonics (in Romanian). Printech, Romania (2000)

    Google Scholar 

  4. Fara, L., Diaconu, A., Dragan, F.: Trends, challenges and opportunities in advanced solar cells technologies and PV market. J. Green Eng. 5, 157–186 (2016). doi:10.13052/jge1904-4720.5350

    Article  Google Scholar 

  5. Zeman, M.: Introduction to Photovoltaic Solar Energy. Delft University of Technology, Netherlands (2012)

    Google Scholar 

  6. Fara, L., Craciunescu, D.: Output analysis of stand-alone PV systems: modeling, simulation and control. Energy Procedia 112, 595–605 (2017). doi:10.1016/j.egypro.2017.03.1125

    Article  Google Scholar 

  7. Diaconu, A., Fara, L., Sterian, P., Craciunescu, D., Fara, S.: Results in sizing and simulation of pv applications based on different solar cell technologies. J. Power Energy Eng. 5(1), 63 (2017). doi:10.4236/jpee.2017.51005

    Article  Google Scholar 

  8. Subudhi, B.: A comparitive study on maximum power point tracking techniques for photovoltaic systems. IEEE Trans. Sustain. Energy 4(1), 89–98 (2013). doi:10.1109/TSTE.2012.2202294

    Article  MathSciNet  Google Scholar 

  9. Taheri, H., Salam, Z., Ishaque, K., Syafaruddin: A novel maximum power point tracking control of photovoltaic system under partial and rapidly fluctuating shadow conditins using differential evolution. In: IEEE Symposium on Industrial Electronics and Applications, Penang, Malaysia (2010). doi:10.1109/ISIEA.2010.5679492

  10. Onat, N.: Recent developments in maximum power point tracking technologied for photovoltaic systems. Int. J. Photoenergy 245316, 1–11 (2010). doi:10.1155/2010/245316

    Article  Google Scholar 

  11. Passino, K.M., Yurkovich, S.: Fuzzy Control. Addison Wesley Longman Inc., California (1998)

    MATH  Google Scholar 

  12. National Instruments. Improving PID Performance. National Instruments (2014)

    Google Scholar 

  13. Zhang, H.: Constant voltage control on DC bus of PV system with Flywheel Energy Storage Source (FESS). In: The International Conference on Advanced Power System Automation and Protection, vol. 300072, pp. 1723–1727 (2011). doi:10.1109/APAP.2011.6180648

  14. Sharma, D.: Designing and modeling fuzzy control systems. Int. J. Comput. Appl. 16(1), 0975–8887. doi:10.1.1.206.2882

    Google Scholar 

  15. Shiau, J.K., Wei, Y.C., Lee, M.Y.: Fuzzy controller for a voltage-regulated solar-powers MPPT system for hybrid power system application. Energies, 8, 3292–3312 (2015). doi:10.3390/en8053292

  16. Letting, L.K., Munda, J.L., Hamam, Y.: Optimization of fuzzy logic controller design for maximum power point tracking in photovoltaic systems. Soft Comput. Green Renew. Energy Syst. 269, 233–260 (2011). doi:10.1007/978-3-642-22176-7_9

    Article  Google Scholar 

  17. Zadeh, L.A.: Toward a theory of fuzzy information granulation and its centrality in human reasoning and fuzzy logic. Fuzzy Sets and System 90, 111–127 (2007). doi:10.1016/S0165-0114(97)00077-8

    Article  MATH  MathSciNet  Google Scholar 

  18. Lilly, J.H.: Fuzzy Control and Identification. Wiley, Hoboken (2010). doi:10.1002/9780470874240

    Book  MATH  Google Scholar 

  19. Omar, A., Ali, A., Sumait, B.S.: Comparison between the effects of different types of membership functions in fuzzy logic controller performance. Int. J. Eng. Res. Technol. 3(3), 2349–4395 (2015)

    Google Scholar 

  20. Touil, S., Attous, D.B.: Effect of different membership functions on fuzzy power system stability for synchronous machine connected to infinite bus. Int. J. Comput. Appl. 71(7), 0975–8872 (2013)

    Google Scholar 

  21. Chaturvedi, D.K.: Modeling and Simulation of System Using Matlab and Simulink. Taylor & Francis Group, US (2010)

    MATH  Google Scholar 

  22. Hong, H.E., Li, Y., Zhang, Z.H., Xu, X.: Fuzzy PID Control System in Industrial Environment. In: Information Technology and Mechatronics Engineering Conference (ITOEC 2015), Tianjin, China (2015)

    Google Scholar 

  23. Dubey, S., Sarvaiya, J.N., Seshadri, B.: Temperature dependent photovoltaic (PV) efficiency and its effect on PV production in the world - a review. In: PV Asia Pacific Conference, Singapore (2012). doi:10.1016/j.egypro.2013.05.072

  24. Amarnath, K., Suresh, R.: Simulaton of incremental conductance MPPT with direct control method using cuk converter. Int. J. Res. Eng. Technol. 2(9), 557–566 (2013)

    Article  Google Scholar 

  25. Safari, A., Mekhilef, S.: Incremental conductance MPPT method for PV systems. In: 24th Canadian Conference on Electrical and Computer Engineering (CCECE), pp. 345–347 (2011). doi:10.1109/CCECE.2011.6030470

  26. Ping, W., Hui, D., Changyu, D., Shengbiao, Q.: An improved MPPT algorithm based on traditional incremental conductance method. In: International Conference on Power Electronics Systems and Applications, Hong Kong (2011). doi:10.1109/PESA.2011.5982914

  27. Ranjani, K., Raja, M., Anitha, B.: Maximum power point tracking by ANN controller for standalone photovoltaic systems. Int. J. Electr. Comput. Energ. Electron. Commun. Eng. 8(3), 615–619 (2014). doi:scholar.waset.org/1999.5/9998096

    Google Scholar 

  28. Modelling and Simulation of Fuzzy Systems Using Matlab and Simulink. Tailor and Francis Group, U.S.A (2010)

    Google Scholar 

  29. Bequette, B.W.: Process Control. Modelling, Design and Simulation. Prentice Hall, New Jersey (2003)

    Google Scholar 

  30. Davis, S.: Solar System Efficiency: Maximum Power Point Tracking is Key (2015). http://powerelectronics.com/solar/solar-system-efficiency-maximum-power-point-tracking-key. Accessed May 2017

  31. Solar365. http://www.solar365.com/green-homes/windows-doors/clerestory-windows-passive-solar-homes. Accessed May 2017

  32. Essefi, R.M., Souissi, M., Abdallah, H.H.: Maximum power point tracking control using neural networks for standalone photovoltaic systems. Int. J. Mod. Nonlinear Theory Appl. 3, 53–65 (2014). doi:10.4236/ijmnta.2014.33008

    Article  Google Scholar 

  33. Mallika, S., Saravanakumar, R.: Genetic algorithms based MPPT controller for photovoltaic systems. Int. Electr. Eng. J. (IEEJ) 4(4), 1159–1164 (2014)

    Google Scholar 

  34. Bogdan, Z.S.: Fuzzy Controller Design: Theory and Applications. Taylor & Francis, Abingdon (2005)

    Google Scholar 

  35. Kaufman, H., Barkana, I., Sobel, K.: Direct Adaptive Control Algorithms: Theory and Applications. Springer, NY (1998)

    Book  Google Scholar 

  36. Dadios, E.: Fuzzy Logic - Controls, Concepts, Theories and Applications. InTech, Croatia (2012)

    Book  Google Scholar 

  37. Vieira, J.A.B., Mota, A.M.: A High-Performance Stand-Alone Solar PV Power System for LED Lighting. ISRN Renewable Energy, pp. 1–10 (2013). doi:10.1155/2013/573919

  38. Islam, M.A., Merabet, A., Beguenane, R., Ibrahim, H.: Power Management Strategy for Solar Stand-alone Hybrid Energy System. Int. J. Electr. Robot. Electron. Commun. Eng. 8(6), 783–787 (2014)

    Google Scholar 

  39. Alternative Energy. http://www.alternative-energy-tutorials.com/solar-power/stand-alone-pv-system.html. Accessed April 2017

  40. Suntech website. http://www.solar-facts-and-advice.com/Suntech.html. Acessed May 2017

  41. Homer Software website. http://homerenergy.com/HOMER_pro.html. Accessed May 2017

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Laurentiu Fara .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this paper

Cite this paper

Craciunescu, D., Fara, L., Sterian, P., Bobei, A., Dragan, F. (2018). Optimized Management for Photovoltaic Applications Based on LEDs by Fuzzy Logic Control and Maximum Power Point Tracking. In: Visa, I., Duta, A. (eds) Nearly Zero Energy Communities. CSE 2017. Springer Proceedings in Energy. Springer, Cham. https://doi.org/10.1007/978-3-319-63215-5_23

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-63215-5_23

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-63214-8

  • Online ISBN: 978-3-319-63215-5

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics