Building Proper Invariants for Large-Eddy Simulation

Conference paper
Part of the ERCOFTAC Series book series (ERCO, volume 24)


We consider the simulation of the incompressible Navier–Stokes (NS) equations.



This work has been financially supported by the Ministerio de Economía y Competitividad, Spain (ENE2014-60577-R), and a Ramón y Cajal postdoctoral contract (RYC-2012-11996). Calculations have been performed on the IBM MareNostrum supercomputer at the Barcelona Supercomputing Center. The authors thankfully acknowledge these institutions.


  1. 1.
    Nicoud, F., Toda, H.B., Cabrit, O., Bose, S., Lee, J.: Using singular values to build a subgrid-scale model for large eddy simulations. Phys. Fluids 23(8), 085106 (2011)CrossRefGoogle Scholar
  2. 2.
    Verstappen, R.: When does eddy viscosity damp subfilter scales sufficiently? J. Sci. Comput. 49(1), 94–110 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Berselli, L.C., Iliescu, T., Layton, W.: Mathematics of Large Eddy Simulation of Turbulent Flows, first edn. Springer (2006)Google Scholar
  4. 4.
    Cantwell, B.J.: Exact solution of a restricted Euler equation for the velocity gradient tensor. Phys. Fluids A 4, 782–793 (1992)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Smagorinsky, J.: General circulation experiments with the primitive equations. Monthly Weather Rev. 91, 99–164 (1963)CrossRefGoogle Scholar
  6. 6.
    Nicoud, F., Ducros, F.: Subgrid-scale stress modelling based on the square of the velocity gradient tensor. Flow, Turbul. Combust. 62(3), 183–200 (1999)Google Scholar
  7. 7.
    Vreman, A.W.: An eddy-viscosity subgrid-scale model for turbulent shear flow: algebraic theory and applications. Phys. Fluids 16(10), 3670–3681 (2004)CrossRefzbMATHGoogle Scholar
  8. 8.
    Trias, F.X., Folch, D., Gorobets, A., Oliva, A.: Building proper invariants for eddy-viscosity subgrid-scale models. Phys. Fluids 27(6), 065103 (2015)CrossRefGoogle Scholar
  9. 9.
    Moser, R.D., Kim, J., Mansour, N.N.: Direct numerical simulation of turbulent channel flow up to \(Re_{\tau } = 590\). Phys. Fluids 11, 943–945 (1999)CrossRefzbMATHGoogle Scholar
  10. 10.
    Trias, F.X., Gorobets, A., Oliva, A.: A simple approach to discretize the viscous term with spatially varying (eddy-)viscosity. J. Comput. Phys. 253, 405–417 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Silvis, M.H., Trias, F.X., Abkar, M., Bae, H.J., Lozano-Durán, A., Verstappen, R.W.C.P.: Exploring nonlinear subgrid-scale models and new characteristic length scales for large-eddy simulation. In: Proceedings of Summer Program 2016, Center for Turbulence Research, Stanford University (2016)Google Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  1. 1.Heat and Mass Transfer Technological Center, ETSEIATTechnical University of CataloniaTerrassaSpain
  2. 2.Keldysh Institute of Applied MathematicsMoscowRussia

Personalised recommendations