Advertisement

ROCK and RHO Playlist for Preimplantation Development: Streaming to HIPPO Pathway and Apicobasal Polarity in the First Cell Differentiation

Chapter
Part of the Advances in Anatomy, Embryology and Cell Biology book series (ADVSANAT, volume 229)

Abstract

In placental mammalian development, the first cell differentiation produces two distinct lineages that emerge according to their position within the embryo: the trophectoderm (TE, placenta precursor) differentiates in the surface, while the inner cell mass (ICM, fetal body precursor) forms inside. Here, we discuss how such position-dependent lineage specifications are regulated by the RHOA subfamily of small GTPases and RHO-associated coiled-coil kinases (ROCK). Recent studies in mouse show that activities of RHO/ROCK are required to promote TE differentiation and to concomitantly suppress ICM formation. RHO/ROCK operate through the HIPPO signaling pathway, whose cell position-specific modulation is central to establishing unique gene expression profiles that confer cell fate. In particular, activities of RHO/ROCK are essential in outside cells to promote nuclear localization of transcriptional co-activators YAP/TAZ, the downstream effectors of HIPPO signaling. Nuclear localization of YAP/TAZ depends on the formation of apicobasal polarity in outside cells, which requires activities of RHO/ROCK. We propose models of how RHO/ROCK regulate lineage specification and lay out challenges for future investigations to deepen our understanding of the roles of RHO/ROCK in preimplantation development. Finally, as RHO/ROCK may be inhibited by certain pharmacological agents, we discuss their potential impact on human preimplantation development in relation to fertility preservation in women.

Keywords

Blastocyst Cdx2 Sox2 PAR–aPKC LATS1/2 AMOT/AMOTL2 C3 exoenzyme Statins Y-27632 

Notes

Acknowledgments

This work was supported by the National Institutes of Health, USA (P20GM103457) and Hawaii Community Foundation (16ADVC-78882) to V.B.A.

References

  1. Aktories K (2015) Rho-modifying bacterial protein toxins. Pathog Dis 73:ftv091CrossRefPubMedGoogle Scholar
  2. Alarcon VB (2010) Cell polarity regulator PARD6B is essential for trophectoderm formation in the preimplantation mouse embryo. Biol Reprod 83:347–358CrossRefPubMedPubMedCentralGoogle Scholar
  3. Alarcon VB, Marikawa Y (2016) Statins inhibit blastocyst formation by preventing geranylgeranylation. Mol Hum Reprod 22:350–363CrossRefPubMedPubMedCentralGoogle Scholar
  4. Amano M, Nakayama M, Kaibuchi K (2010) Rho-kinase/ROCK: a key regulator of the cytoskeleton and cell polarity. Cytoskeleton 67:545–554CrossRefPubMedPubMedCentralGoogle Scholar
  5. Amin E, Dubey BN, Zhang SC, Gremer L, Dvorsky R, Moll JM, Taha MS, Nagel-Steger L, Piekorz RP, Somlyo AV, Ahmadian MR (2013) Rho-kinase: regulation, (dys)function, and inhibition. Biol Chem 394:1399–1410CrossRefPubMedPubMedCentralGoogle Scholar
  6. Anani S, Bhat S, Honma-Yamanaka N, Krawchuk D, Yamanaka Y (2014) Initiation of Hippo signaling is linked to polarity rather than to cell position in the pre-implantation mouse embryo. Development 141:2813–2824CrossRefPubMedGoogle Scholar
  7. Arnett DK, Jacobs DR Jr, Luepker RV, Blackburn H, Armstrong C, Claas SA (2005) Twenty-year trends in serum cholesterol, hypercholesterolemia, and cholesterol medication use: the Minnesota Heart Survey, 1980–1982 to 2000–2002. Circulation 112:3884–3891CrossRefPubMedGoogle Scholar
  8. Benton R, St Johnston D (2003) Drosophila PAR-1 and 14-3-3 inhibit Bazooka/PAR-3 to establish complementary cortical domains in polarized cells. Cell 115:691–704 (Erratum in: Cell 2004 116:139)Google Scholar
  9. Cao Z, Carey TS, Ganguly A, Wilson CA, Paul S, Knott JG (2015) Transcription factor AP-2γ induces early Cdx2 expression and represses HIPPO signaling to specify the trophectoderm lineage. Development 142:1606–1615Google Scholar
  10. Clayton L, Hall A, Johnson MH (1999) A role for Rho-like GTPases in the polarisation of mouse eight-cell blastomeres. Dev Biol 205:322–331CrossRefPubMedGoogle Scholar
  11. Cockburn K, Biechele S, Garner J, Rossant J (2013) The Hippo pathway member Nf2 is required for inner cell mass specification. Curr Biol 23:1195–1201CrossRefPubMedGoogle Scholar
  12. Dard N, Le T, Maro B, Louvet-Vallee S (2009) Inactivation of aPKClambda reveals a context dependent allocation of cell lineages in preimplantation mouse embryos. PLoS One 4:e7117CrossRefPubMedPubMedCentralGoogle Scholar
  13. Davies SP, Reddy H, Caivano M, Cohen P (2000) Specificity and mechanism of action of some commonly used protein kinase inhibitors. Biochem J 351:95–105CrossRefPubMedPubMedCentralGoogle Scholar
  14. Dupont S (2016) Role of YAP/TAZ in cell-matrix adhesion-mediated signalling and mechanotransduction. Exp Cell Res 343:42–53CrossRefPubMedGoogle Scholar
  15. Eisa-Beygi S, Ekker M, Moon TW, Macdonald RL, Wen XY (2014) Developmental processes regulated by the 3-hydroxy-3-methylglutaryl-CoA reductase (HMGCR) pathway: highlights from animal studies. Reprod Toxicol 46:115–120CrossRefPubMedGoogle Scholar
  16. Feng Y, LoGrasso PV, Defert O, Li R (2016) Rho kinase (ROCK) inhibitors and their therapeutic potential. J Med Chem 59:2269–2300CrossRefPubMedGoogle Scholar
  17. Fierro-Gonzalez JC, White MD, Silva JC, Plachta N (2013) Cadherin-dependent filopodia control preimplantation embryo compaction. Nat Cell Biol 15:1424–1433CrossRefPubMedGoogle Scholar
  18. Gardner DK, Lane M (1998) Culture of viable human blastocysts in defined sequential serum-free media. Hum Reprod Suppl 3:148–159CrossRefGoogle Scholar
  19. Guo G, Huss M, Tong GQ, Wang C, Li Sun L, Clarke ND, Robson P (2010) Resolution of cell fate decisions revealed by single-cell gene expression analysis from zygote to blastocyst. Dev Cell 18:675–685CrossRefPubMedGoogle Scholar
  20. Hakem A, Sanchez-Sweatman O, You-Ten A, Duncan G, Wakeham A, Khokha R, Mak TW (2005) RhoC is dispensable for embryogenesis and tumor initiation but essential for metastasis. Genes Dev 19:1974–1979CrossRefPubMedPubMedCentralGoogle Scholar
  21. Hamatani T, Carter MG, Sharov AA, Ko MS (2004) Dynamics of global gene expression changes during mouse preimplantation development. Dev Cell 6:117–131CrossRefPubMedGoogle Scholar
  22. Hamidi M, Zarei N, Shahbazi MA (2009) A simple and sensitive HPLC-UV method for quantitation of lovastatin in human plasma: application to a bioequivalence study. Biol Pharm Bull 32:1600–1603CrossRefPubMedGoogle Scholar
  23. Hirate Y, Sasaki H (2014) The role of angiomotin phosphorylation in the Hippo pathway during preimplantation mouse development. Tissue Barriers 2:e28127CrossRefPubMedPubMedCentralGoogle Scholar
  24. Hirate Y, Cockburn K, Rossant J, Sasaki H (2012) Tead4 is constitutively nuclear, while nuclear vs. cytoplasmic Yap distribution is regulated in preimplantation mouse embryos. Proc Natl Acad Sci USA 109:E3389–E3390CrossRefPubMedPubMedCentralGoogle Scholar
  25. Hirate Y, Hirahara S, Inoue K, Suzuki A, Alarcon VB, Akimoto K, Hirai T, Hara T, Adachi M, Chida K, Ohno S, Marikawa Y, Nakao K, Shimono A, Sasaki H (2013) Polarity-dependent distribution of angiomotin localizes Hippo signaling in preimplantation embryos. Curr Biol 23:1181–1194CrossRefPubMedPubMedCentralGoogle Scholar
  26. Hirate Y, Hirahara S, Inoue K, Kiyonari H, Niwa H, Sasaki H (2015) Par-aPKC-dependent and -independent mechanisms cooperatively control cell polarity, Hippo signaling, and cell positioning in 16-cell stage mouse embryos. Dev Growth Differ 57:544–556CrossRefPubMedGoogle Scholar
  27. Hirota T, Ieiri I (2015) Drug-drug interactions that interfere with statin metabolism. Expert Opin Drug Metab Toxicol 11:1435–1447CrossRefPubMedGoogle Scholar
  28. Hodge RG, Ridley AJ (2016) Regulating Rho GTPases and their regulators. Nat Rev Mol Cell Biol 17:496–510CrossRefPubMedGoogle Scholar
  29. Home P, Ray S, Dutta D, Bronshteyn I, Larson M, Paul S (2009) GATA3 is selectively expressed in the trophectoderm of peri-implantation embryo and directly regulates Cdx2 gene expression. J Biol Chem 284:28729–28737CrossRefPubMedPubMedCentralGoogle Scholar
  30. Huang S, Ding C, Mai Q, Xu Y, Zhou C (2016) Inhibition of Rho-associated protein kinase increases the ratio of formation of blastocysts from single human blastomeres. Mol Med Rep 13:2046–2052CrossRefPubMedPubMedCentralGoogle Scholar
  31. Hurov JB, Watkins JL, Piwnica-Worms H (2004) Atypical PKC phosphorylates PAR-1 kinases to regulate localization and activity. Curr Biol 14:736–741CrossRefPubMedGoogle Scholar
  32. Ishiuchi T, Takeichi M (2011) Willin and Par3 cooperatively regulate epithelial apical constriction through aPKC-mediated ROCK phosphorylation. Nat Cell Biol 13:860–866CrossRefPubMedGoogle Scholar
  33. Kamijo H, Matsumura Y, Thumkeo D, Koike S, Masu M, Shimizu Y, Ishizaki T, Narumiya S (2011) Impaired vascular remodeling in the yolk sac of embryos deficient in ROCK-I and ROCK-II. Genes Cells 16:1012–1021CrossRefPubMedGoogle Scholar
  34. Kaneko KJ, DePamphilis ML (2013) TEAD4 establishes the energy homeostasis essential for blastocoel formation. Development 140:3680–3690CrossRefPubMedPubMedCentralGoogle Scholar
  35. Kawagishi R, Tahara M, Sawada K, Ikebuchi Y, Morishige K, Sakata M, Tasaka K, Murata Y (2004) Rho-kinase is involved in mouse blastocyst cavity formation. Biochem Biophys Res Commun 319:643–648CrossRefPubMedGoogle Scholar
  36. Konigs V, Jennings R, Vogl T, Horsthemke M, Bachg AC, Xu Y, Grobe K, Brakebusch C, Schwab A, Bahler M, Knaus UG, Hanley PJ (2014) Mouse macrophages completely lacking Rho subfamily GTPases (RhoA, RhoB, and RhoC) have severe lamellipodial retraction defects, but robust chemotactic navigation and altered motility. J Biol Chem 289:30772–30784CrossRefPubMedPubMedCentralGoogle Scholar
  37. Kono K, Tamashiro DA, Alarcon VB (2014) Inhibition of RHO-ROCK signaling enhances ICM and suppresses TE characteristics through activation of Hippo signaling in the mouse blastocyst. Dev Biol 394:142–155CrossRefPubMedPubMedCentralGoogle Scholar
  38. Korotkevich E, Niwayama R, Courtois A, Friese S, Berger N, Buchholz F, Hiiragi T (2017) The apical domain is required and sufficient for the first lineage segregation in the mouse embryo. Dev Cell 40:235–247CrossRefPubMedPubMedCentralGoogle Scholar
  39. Kumper S, Mardakheh FK, McCarthy A, Yeo M, Stamp GW, Paul A, Worboys J, Sadok A, Jorgensen C, Guichard S, Marshall CJ (2016) Rho-associated kinase (ROCK) function is essential for cell cycle progression, senescence and tumorigenesis. Elife 5:e12994CrossRefPubMedGoogle Scholar
  40. Kwan J, Sczaniecka A, Arash EH, Nguyen L, Chen CC, Ratkovic S, Klezovitch O, Attisano L, McNeill H, Emili A, Vasioukhin V (2016) DLG5 connects cell polarity and Hippo signaling protein networks by linking PAR-1 with MST1/2. Genes Dev 30:2696–2709CrossRefPubMedPubMedCentralGoogle Scholar
  41. Laeno AM, Tamashiro DA, Alarcon VB (2013) Rho-associated kinase activity is required for proper morphogenesis of the inner cell mass in the mouse blastocyst. Biol Reprod 89:122CrossRefPubMedPubMedCentralGoogle Scholar
  42. Leung CY, Zernicka-Goetz M (2013) Angiomotin prevents pluripotent lineage differentiation in mouse embryos via Hippo pathway-dependent and -independent mechanisms. Nat Commun 4:2251CrossRefPubMedPubMedCentralGoogle Scholar
  43. Lewis KA, Holstein SA, Hohl RJ (2005) Lovastatin alters the isoprenoid biosynthetic pathway in acute myelogenous leukemia cells in vivo. Leuk Res 29:527–533CrossRefPubMedGoogle Scholar
  44. Liu AX, Rane N, Liu JP, Prendergast GC (2001) RhoB is dispensable for mouse development, but it modifies susceptibility to tumor formation as well as cell adhesion and growth factor signaling in transformed cells. Mol Cell Biol 21:6906–6912CrossRefPubMedPubMedCentralGoogle Scholar
  45. Liu H, Wu Z, Shi X, Li W, Liu C, Wang D, Ye X, Liu L, Na J, Cheng H, Chen L (2013) Atypical PKC, regulated by Rho GTPases and Mek/Erk, phosphorylates Ezrin during eight-cell embryo compaction. Dev Biol 375:13–22CrossRefPubMedGoogle Scholar
  46. Lorthongpanich C, Messerschmidt DM, Chan SW, Hong W, Knowles BB, Solter D (2013) Temporal reduction of LATS kinases in the early preimplantation embryo prevents ICM lineage differentiation. Genes Dev 27:1441–1446CrossRefPubMedPubMedCentralGoogle Scholar
  47. Lv XB, Liu CY, Wang Z, Sun YP, Xiong Y, Lei QY, Guan KL (2015) PARD3 induces TAZ activation and cell growth by promoting LATS1 and PP1 interaction. EMBO Rep 16:975–985Google Scholar
  48. Lynch T, Price A (2007) The effect of cytochrome P450 metabolism on drug response, interactions, and adverse effects. Am Fam Physician 76:391–396PubMedGoogle Scholar
  49. Maitre JL, Niwayama R, Turlier H, Nedelec F, Hiiragi T (2015) Pulsatile cell-autonomous contractility drives compaction in the mouse embryo. Nat Cell Biol 17:849–855CrossRefPubMedGoogle Scholar
  50. Maitre JL, Turlier H, Illukkumbura R, Eismann B, Niwayama R, Nedelec F, Hiiragi T (2016) Asymmetric division of contractile domains couples cell positioning and fate specification. Nature 536:344–348CrossRefPubMedPubMedCentralGoogle Scholar
  51. Melendez J, Stengel K, Zhou X, Chauhan BK, Debidda M, Andreassen P, Lang RA, Zheng Y (2011) RhoA GTPase is dispensable for actomyosin regulation but is essential for mitosis in primary mouse embryonic fibroblasts. J Biol Chem 286:15132–15137CrossRefPubMedPubMedCentralGoogle Scholar
  52. Meng Z, Moroishi T, Mottier-Pavie V, Plouffe SW, Hansen CG, Hong AW, Park HW, Mo JS, Lu W, Lu S, Flores F, Yu FX, Halder G, Guan KL (2015) MAP4K family kinases act in parallel to MST1/2 to activate LATS1/2 in the Hippo pathway. Nat Commun 6:8357Google Scholar
  53. Meng Z, Moroishi T, Guan KL (2016) Mechanisms of Hippo pathway regulation. Genes Dev 30:1–17CrossRefPubMedPubMedCentralGoogle Scholar
  54. Mihajlovic AI, Bruce AW (2016) Rho-associated protein kinase regulates subcellular localisation of Angiomotin and Hippo-signalling during preimplantation mouse embryo development. Reprod BioMed Online 33:381–390CrossRefPubMedGoogle Scholar
  55. Nakayama M, Goto TM, Sugimoto M, Nishimura T, Shinagawa T, Ohno S, Amano M, Kaibuchi K (2008) Rho-kinase phosphorylates PAR-3 and disrupts PAR complex formation. Dev Cell 14:205–215CrossRefPubMedGoogle Scholar
  56. Neuvonen PJ (2010) Drug interactions with HMG-CoA reductase inhibitors (statins): the importance of CYP enzymes, transporters and pharmacogenetics. Curr Opin Investig Drugs 11:323–332PubMedGoogle Scholar
  57. Nishioka N, Yamamoto S, Kiyonari H, Sato H, Sawada A, Ota M, Nakao K, Sasaki H (2008) Tead4 is required for specification of trophectoderm in pre-implantation mouse embryos. Mech Dev 125:270–283CrossRefPubMedGoogle Scholar
  58. Nishioka N, Inoue K, Adachi K, Kiyonari H, Ota M, Ralston A, Yabuta N, Hirahara S, Stephenson RO, Ogonuki N, Makita R, Kurihara H, Morin-Kensicki EM, Nojima H, Rossant J, Nakao K, Niwa H, Sasaki H (2009) The Hippo signaling pathway components Lats and Yap pattern Tead4 activity to distinguish mouse trophectoderm from inner cell mass. Dev Cell 16:398–410CrossRefPubMedGoogle Scholar
  59. Ohgushi M, Minaguchi M, Sasai Y (2015) Rho-signaling-directed YAP/TAZ activity underlies the long-term survival and expansion of human embryonic stem cells. Cell Stem Cell 17:448–461CrossRefPubMedGoogle Scholar
  60. Pedersen E, Brakebusch C (2012) Rho GTPase function in development: how in vivo models change our view. Exp Cell Res 318:1779–1787CrossRefPubMedGoogle Scholar
  61. Pertz O (2010) Spatio-temporal Rho GTPase signaling – where are we now? J Cell Sci 123:1841–1850CrossRefPubMedGoogle Scholar
  62. Plusa B, Frankenberg S, Chalmers A, Hadjantonakis AK, Moore CA, Papalopulu N, Papaioannou VE, Glover DM, Zernicka-Goetz M (2005) Downregulation of Par3 and aPKC function directs cells towards the ICM in the preimplantation mouse embryo. J Cell Sci 118:505–515CrossRefPubMedGoogle Scholar
  63. Posfai E, Petropoulos S, de Barros FR, Schell JP, Jurisica I, Sandberg R, Lanner F, Rossant J (2017) Position- and Hippo signaling-dependent plasticity during lineage segregation in the early mouse embryo. Elife 6:pii:e22906. https://doi.org/10.7554/eLife.22906
  64. Ralston A, Cox BJ, Nishioka N, Sasaki H, Chea E, Rugg-Gunn P, Guo G, Robson P, Draper JS, Rossant J (2010) Gata3 regulates trophoblast development downstream of Tead4 and in parallel to Cdx2. Development 137:395–403CrossRefPubMedGoogle Scholar
  65. Rayon T, Menchero S, Nieto A, Xenopoulos P, Crespo M, Cockburn K, Canon S, Sasaki H, Hadjantonakis AK, de la Pompa JL, Rossant J, Manzanares M (2014) Notch and hippo converge on Cdx2 to specify the trophectoderm lineage in the mouse blastocyst. Dev Cell 30:410–422CrossRefPubMedPubMedCentralGoogle Scholar
  66. Rodriguez-Boulan E, Macara IG (2014) Organization and execution of the epithelial polarity programme. Nat Rev Mol Cell Biol 15:225–242CrossRefPubMedPubMedCentralGoogle Scholar
  67. Samarage CR, White MD, Alvarez YD, Fierro-Gonzalez JC, Henon Y, Jesudason EC, Bissiere S, Fouras A, Plachta N (2015) Cortical tension allocates the first inner cells of the mammalian embryo. Dev Cell 34:435–447CrossRefPubMedGoogle Scholar
  68. Sansores-Garcia L, Bossuyt W, Wada K, Yonemura S, Tao C, Sasaki H, Halder G (2011) Modulating F-actin organization induces organ growth by affecting the Hippo pathway. EMBO J 30:2325–2335CrossRefPubMedPubMedCentralGoogle Scholar
  69. Sauzeau V, Berenjeno IM, Citterio C, Bustelo XR (2010) A transcriptional cross-talk between RhoA and c-Myc inhibits the RhoA/Rock-dependent cytoskeleton. Oncogene 29:3781–3792CrossRefPubMedPubMedCentralGoogle Scholar
  70. Shimizu Y, Thumkeo D, Keel J, Ishizaki T, Oshima H, Oshima M, Noda Y, Matsumura F, Taketo MM, Narumiya S (2005) ROCK-I regulates closure of the eyelids and ventral body wall by inducing assembly of actomyosin bundles. J Cell Biol 168:941–953CrossRefPubMedPubMedCentralGoogle Scholar
  71. Solter D (2016) Preformation versus epigenesis in early mammalian development. Curr Top Dev Biol 117:377–391CrossRefPubMedGoogle Scholar
  72. Sorrentino G, Ruggeri N, Specchia V, Cordenonsi M, Mano M, Dupont S, Manfrin A, Ingallina E, Sommaggio R, Piazza S, Rosato A, Piccolo S, Del Sal G (2014) Metabolic control of YAP and TAZ by the mevalonate pathway. Nat Cell Biol 16:357–366CrossRefPubMedGoogle Scholar
  73. Stephenson RO, Yamanaka Y, Rossant J (2010) Disorganized epithelial polarity and excess trophectoderm cell fate in preimplantation embryos lacking E-cadherin. Development 137:3383–3391CrossRefPubMedGoogle Scholar
  74. Strumpf D, Mao CA, Yamanaka Y, Ralston A, Chawengsaksophak K, Beck F, Rossant J (2005) Cdx2 is required for correct cell fate specification and differentiation of trophectoderm in the mouse blastocyst. Development 132:2093–2102CrossRefPubMedGoogle Scholar
  75. Sun S, Irvine KD (2016) Cellular organization and cytoskeletal regulation of the Hippo signaling network. Trends Cell Biol 26:694–704CrossRefPubMedPubMedCentralGoogle Scholar
  76. Surani MAH, Kimber SJ, Osborn JC (1983) Mevalonate reverses the developmental arrest of preimplantation mouse embryos by Compactin, an inhibitor of HMG CoA reductase. J Embryol Exp Morphol 75:205–223PubMedGoogle Scholar
  77. Suzuki A, Hirata M, Kamimura K, Maniwa R, Yamanaka T, Mizuno K, Kishikawa M, Hirose H, Amano Y, Izumi N, Miwa Y, Ohno S (2004) aPKC acts upstream of PAR-1b in both the establishment and maintenance of mammalian epithelial polarity. Curr Biol 14:1425–1435CrossRefPubMedGoogle Scholar
  78. Tao H, Inoue K, Kiyonari H, Bassuk AG, Axelrod JD, Sasaki H, Aizawa S, Ueno N (2012) Nuclear localization of Prickle2 is required to establish cell polarity during early mouse embryogenesis. Dev Biol 364:138–148CrossRefPubMedPubMedCentralGoogle Scholar
  79. Thumkeo D, Keel J, Ishizaki T, Hirose M, Nonomura K, Oshima H, Oshima M, Taketo MM, Narumiya S (2003) Targeted disruption of the mouse rho-associated kinase 2 gene results in intrauterine growth retardation and fetal death. Mol Cell Biol 23:5043–5055CrossRefPubMedPubMedCentralGoogle Scholar
  80. Thumkeo D, Watanabe S, Narumiya S (2013) Physiological roles of Rho and Rho effectors in mammals. Eur J Cell Biol 92:303–315CrossRefPubMedGoogle Scholar
  81. Truebestein L, Elsner DJ, Fuchs E, Leonard TA (2015) A molecular ruler regulates cytoskeletal remodeling by the Rho kinases. Nat Commun 6:10029CrossRefPubMedPubMedCentralGoogle Scholar
  82. Vassilev A, Kaneko KJ, Shu H, Zhao Y, DePamphilis ML (2001) TEAD/TEF transcription factors utilize the activation domain of YAP65, a Src/Yes-associated protein localized in the cytoplasm. Genes Dev 15:1229–1241CrossRefPubMedPubMedCentralGoogle Scholar
  83. Vinot S, Le T, Ohno S, Pawson T, Maro B, Louvet-Vallee S (2005) Asymmetric distribution of PAR proteins in the mouse embryo begins at the 8-cell stage during compaction. Dev Biol 282:307–319CrossRefPubMedGoogle Scholar
  84. Vogelsgesang M, Pautsch A, Aktories K (2007) C3 exoenzymes, novel insights into structure and action of Rho-ADP-ribosylating toxins. Naunyn Schmiedeberg’s Arch Pharmacol 374:347–360CrossRefGoogle Scholar
  85. Wada K, Itoga K, Okano T, Yonemura S, Sasaki H (2011) Hippo pathway regulation by cell morphology and stress fibers. Development 138:3907–3914CrossRefPubMedGoogle Scholar
  86. Wennekamp S, Mesecke S, Nedelec F, Hiiragi T (2013) A self-organization framework for symmetry breaking in the embryo. Nat Rev Mol Cell Biol 14:452–459CrossRefPubMedGoogle Scholar
  87. Wicklow E, Blij S, Frum T, Hirate Y, Lang RA, Sasaki H, Ralston A (2014) HIPPO pathway members restrict SOX2 to the inner cell mass where it promotes ICM fates in the mouse blastocyst. PLoS Genet 10:e1004618CrossRefPubMedPubMedCentralGoogle Scholar
  88. Wilde C, Genth H, Aktories K, Just I (2000) Recognition of RhoA by Clostridium botulinum C3 exoenzyme. J Biol Chem 275:16478–16483CrossRefPubMedGoogle Scholar
  89. Wong SY, Ulrich TA, Deleyrolle LP, MacKay JL, Lin JM, Martuscello RT, Jundi MA, Reynolds BA, Kumar S (2015) Constitutive activation of myosin-dependent contractility sensitizes glioma tumor-initiating cells to mechanical inputs and reduces tissue invasion. Cancer Res 75:1113–1122CrossRefPubMedPubMedCentralGoogle Scholar
  90. Xie D, Chen CC, Ptaszek LM, Xiao S, Cao X, Fang F, Ng HH, Lewin HA, Cowan C, Zhong S (2010) Rewirable gene regulatory networks in the preimplantation embryonic development of three mammalian species. Genome Res 20:804–815CrossRefPubMedPubMedCentralGoogle Scholar
  91. Yagi R, Kohn MJ, Karavanova I, Kaneko KJ, Vullhorst D, DePamphilis ML, Buonanno A (2007) Transcription factor TEAD4 specifies the trophectoderm lineage at the beginning of mammalian development. Development 134:3827–3836CrossRefPubMedGoogle Scholar
  92. Yamanaka T, Horikoshi Y, Sugiyama Y, Ishiyama C, Suzuki A, Hirose T, Iwamatsu A, Shinohara A, Ohno S (2003) Mammalian Lgl forms a protein complex with PAR-6 and aPKC independently of PAR-3 to regulate epithelial cell polarity. Curr Biol 13:734–743CrossRefPubMedGoogle Scholar
  93. Yan L, Yang M, Guo H, Yang L, Wu J, Li R, Liu P, Lian Y, Zheng X, Yan J, Huang J, Li M, Wu X, Wen L, Lao K, Li R, Qiao J, Tang F (2013) Single-cell RNA-Seq profiling of human preimplantation embryos and embryonic stem cells. Nat Struct Mol Biol 20:1131–1139CrossRefPubMedGoogle Scholar
  94. Yeganeh B, Wiechec E, Ande SR, Sharma P, Moghadam AR, Post M, Freed DH, Hashemi M, Shojaei S, Zeki AA, Ghavami S (2014) Targeting the mevalonate cascade as a new therapeutic approach in heart disease, cancer and pulmonary disease. Pharmacol Ther 143:87–110CrossRefPubMedPubMedCentralGoogle Scholar
  95. Zeng F, Baldwin DA, Schultz RM (2004) Transcript profiling during preimplantation mouse development. Dev Biol 272:483–496CrossRefPubMedGoogle Scholar
  96. Zhang L, Tang F, Terracciano L, Hynx D, Kohler R, Bichet S, Hess D, Cron P, Hemmings BA, Hergovich A, Schmitz-Rohmer D (2015) NDR functions as a physiological YAP1 kinase in the intestinal epithelium. Curr Biol 25:296–305CrossRefPubMedPubMedCentralGoogle Scholar
  97. Zheng Y, Wang W, Liu B, Deng H, Uster E, Pan D (2015) Identification of Happyhour/MAP4K as alternative Hpo/Mst-like kinases in the Hippo kinase cascade. Dev Cell 34:642–655Google Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  1. 1.Department of Anatomy, Biochemistry and Physiology, Institute for Biogenesis ResearchJohn A. Burns School of Medicine, University of HawaiiHonoluluUSA

Personalised recommendations