Advertisement

Transcriptional Regulation and Genes Involved in First Lineage Specification During Preimplantation Development

Chapter
Part of the Advances in Anatomy, Embryology and Cell Biology book series (ADVSANAT, volume 229)

Abstract

The successful development from a single-cell zygote into a complex multicellular organism requires precise coordination of multiple cell-fate decisions. The very first of these is lineage specification into the inner cell mass (ICM) and trophectoderm (TE) during mammalian preimplantation development. In mouse embryos, transcription factors (TFs) such as Oct4, Sox2, and Nanog are enriched in cells of ICM, which gives rise to the fetus and yolk sac. Conversely, TFs such as Cdx2 and Eomes become highly upregulated in TE, which contribute to the placenta. Here, we review the current understanding of key transcriptional control mechanisms and genes responsible for these distinct differences during the first cell lineage specification. In particular, we highlight recent insights gained through advances in genome manipulation, live imaging, single-cell transcriptomics, and loss-of-function studies.

Notes

Acknowledgements

This work is supported in part by NIH HD078942 and HD083311 to JM. WC is supported in part by Lalor Foundation postdoctoral fellowship.

References

  1. Alarcon VB (2010) Cell polarity regulator PARD6B is essential for trophectoderm formation in the preimplantation mouse embryo. Biol Reprod 83:347–358. https://doi.org/10.1095/biolreprod.110.084400 CrossRefPubMedPubMedCentralGoogle Scholar
  2. Alder O, Lavial F, Helness A et al (2010) Ring1B and Suv39h1 delineate distinct chromatin states at bivalent genes during early mouse lineage commitment. Development 137:2483–2492. https://doi.org/10.1242/dev.048363 CrossRefPubMedPubMedCentralGoogle Scholar
  3. Anani S, Bhat S, Honma-Yamanaka N, Krawchuk D, Yamanaka Y (2014) Initiation of Hippo signaling is linked to polarity rather than to cell position in the pre-implantation mouse embryo. Development 141:2813–2824. https://doi.org/10.1242/dev.107276 CrossRefPubMedGoogle Scholar
  4. Arnold SJ, Robertson EJ (2009) Making a commitment: cell lineage allocation and axis patterning in the early mouse embryo. Nat Rev Mol Cell Biol 10:91–103. https://doi.org/10.1038/nrm2618 CrossRefPubMedGoogle Scholar
  5. Auman HJ, Nottoli T, Lakiza O, Winger Q, Donaldson S, Williams T (2002) Transcription factor AP-2gamma is essential in the extra-embryonic lineages for early postimplantation development. Development 129:2733–2747PubMedGoogle Scholar
  6. Bernstein BE, Meissner A, Lander ES (2007) The mammalian epigenome. Cell 128:669–681. https://doi.org/10.1016/j.cell.2007.01.033 CrossRefPubMedGoogle Scholar
  7. Biase FH, Cao X, Zhong S (2014) Cell fate inclination within 2-cell and 4-cell mouse embryos revealed by single-cell RNA sequencing. Genome Res 24:1787–1796. https://doi.org/10.1101/gr.177725.114 CrossRefPubMedPubMedCentralGoogle Scholar
  8. Bosher JM, Williams T, Hurst HC (1995) The developmentally regulated transcription factor AP-2 is involved in c-erbB-2 overexpression in human mammary carcinoma. Proc Natl Acad Sci USA 92:744–747CrossRefPubMedPubMedCentralGoogle Scholar
  9. Burton A, Torres-Padilla ME (2014) Chromatin dynamics in the regulation of cell fate allocation during early embryogenesis. Nat Rev Mol Cell Biol 15:723–734. https://doi.org/10.1038/nrm3885 CrossRefPubMedGoogle Scholar
  10. Burton A, Muller J, Tu S, Padilla-Longoria P, Guccione E, Torres-Padilla ME (2013) Single-cell profiling of epigenetic modifiers identifies PRDM14 as an inducer of cell fate in the mammalian embryo. Cell Rep 5:687–701. https://doi.org/10.1016/j.celrep.2013.09.044 CrossRefPubMedGoogle Scholar
  11. Cao Z, Carey TS, Ganguly A, Wilson CA, Paul S, Knott JG (2015) Transcription factor AP-2gamma induces early Cdx2 expression and represses HIPPO signaling to specify the trophectoderm lineage. Development 142:1606–1615. https://doi.org/10.1242/dev.120238 CrossRefPubMedPubMedCentralGoogle Scholar
  12. Chazaud C, Yamanaka Y (2016) Lineage specification in the mouse preimplantation embryo. Development 143:1063–1074. https://doi.org/10.1242/dev.128314 CrossRefPubMedGoogle Scholar
  13. Choi I, Carey TS, Wilson CA, Knott JG (2012) Transcription factor AP-2gamma is a core regulator of tight junction biogenesis and cavity formation during mouse early embryogenesis. Development 139:4623–4632. https://doi.org/10.1242/dev.086645 CrossRefPubMedPubMedCentralGoogle Scholar
  14. Clayton L, Hall A, Johnson MH (1999) A role for Rho-like GTPases in the polarisation of mouse eight-cell blastomeres. Dev Biol 205:322–331. https://doi.org/10.1006/dbio.1998.9117 CrossRefPubMedGoogle Scholar
  15. Cockburn K, Rossant J (2010) Making the blastocyst: lessons from the mouse. J Clin Invest 120:995–1003. https://doi.org/10.1172/JCI41229 CrossRefPubMedPubMedCentralGoogle Scholar
  16. Cockburn K, Biechele S, Garner J, Rossant J (2013) The Hippo pathway member Nf2 is required for inner cell mass specification. Curr Biol 23:1195–1201. https://doi.org/10.1016/j.cub.2013.05.044 CrossRefPubMedGoogle Scholar
  17. Cui W, Dai X, Marcho C, Han Z, Zhang K, Tremblay KD, Mager J (2016a) Towards functional annotation of the preimplantation transcriptome: an RNAi screen in mammalian embryos. Sci Rep 6:37396. https://doi.org/10.1038/srep37396 CrossRefPubMedPubMedCentralGoogle Scholar
  18. Cui W, Pizzollo J, Han Z, Marcho C, Zhang K, Mager J (2016b) Nop2 is required for mammalian preimplantation development. Mol Reprod Dev 83:124–131. https://doi.org/10.1002/mrd.22600 CrossRefPubMedGoogle Scholar
  19. Dahl JA, Reiner AH, Klungland A, Wakayama T, Collas P (2010) Histone H3 lysine 27 methylation asymmetry on developmentally-regulated promoters distinguish the first two lineages in mouse preimplantation embryos. PLoS One 5:e9150. https://doi.org/10.1371/journal.pone.0009150 CrossRefPubMedPubMedCentralGoogle Scholar
  20. De Vries WN, Evsikov AV, Haac BE et al (2004) Maternal beta-catenin and E-cadherin in mouse development. Development 131:4435–4445. https://doi.org/10.1242/dev.01316 CrossRefPubMedGoogle Scholar
  21. Erhardt S, Lyko F, Ainscough JF, Surani MA, Paro R (2003) Polycomb-group proteins are involved in silencing processes caused by a transgenic element from the murine imprinted H19/Igf2 region in Drosophila. Dev Genes Evol 213:336–344CrossRefPubMedGoogle Scholar
  22. Fierro-Gonzalez JC, White MD, Silva JC, Plachta N (2013) Cadherin-dependent filopodia control preimplantation embryo compaction. Nat Cell Biol 15:1424–1433. https://doi.org/10.1038/ncb2875 CrossRefPubMedGoogle Scholar
  23. Fleming TP, Sheth B, Fesenko I (2001) Cell adhesion in the preimplantation mammalian embryo and its role in trophectoderm differentiation and blastocyst morphogenesis. Front Biosci 6:D1000–D1007CrossRefPubMedGoogle Scholar
  24. Goolam M, Scialdone A, Graham SJ et al (2016) Heterogeneity in Oct4 and Sox2 targets biases cell fate in 4-cell mouse embryos. Cell 165:61–74. https://doi.org/10.1016/j.cell.2016.01.047 CrossRefPubMedPubMedCentralGoogle Scholar
  25. Guo G, Huss M, Tong GQ, Wang C, Li Sun L, Clarke ND, Robson P (2010) Resolution of cell fate decisions revealed by single-cell gene expression analysis from zygote to blastocyst. Dev Cell 18:675–685. https://doi.org/10.1016/j.devcel.2010.02.012 CrossRefPubMedGoogle Scholar
  26. Herrmann D, Dahl JA, Lucas-Hahn A, Collas P, Niemann H (2013) Histone modifications and mRNA expression in the inner cell mass and trophectoderm of bovine blastocysts. Epigenetics 8:281–289. https://doi.org/10.4161/epi.23899 CrossRefPubMedPubMedCentralGoogle Scholar
  27. Hiiragi T, Solter D (2004) First cleavage plane of the mouse egg is not predetermined but defined by the topology of the two apposing pronuclei. Nature 430:360–364. https://doi.org/10.1038/nature02595 CrossRefPubMedGoogle Scholar
  28. Hiiragi T, Louvet-Vallee S, Solter D, Maro B (2006) Embryology: does prepatterning occur in the mouse egg? Nature 442:E3–4; discussion E4. https://doi.org/10.1038/nature04907
  29. Hilger-Eversheim K, Moser M, Schorle H, Buettner R (2000) Regulatory roles of AP-2 transcription factors in vertebrate development, apoptosis and cell-cycle control. Gene 260:1–12CrossRefPubMedGoogle Scholar
  30. Hirate Y, Hirahara S, Inoue K et al (2013) Polarity-dependent distribution of angiomotin localizes Hippo signaling in preimplantation embryos. Curr Biol 23:1181–1194. https://doi.org/10.1016/j.cub.2013.05.014 CrossRefPubMedPubMedCentralGoogle Scholar
  31. Home P, Saha B, Ray S et al (2012) Altered subcellular localization of transcription factor TEAD4 regulates first mammalian cell lineage commitment. Proc Natl Acad Sci USA 109:7362–7367. https://doi.org/10.1073/pnas.1201595109 CrossRefPubMedPubMedCentralGoogle Scholar
  32. Houliston E, Pickering SJ, Maro B (1989) Alternative routes for the establishment of surface polarity during compaction of the mouse embryo. Dev Biol 134:342–350CrossRefPubMedGoogle Scholar
  33. Kamburov A, Stelzl U, Lehrach H, Herwig R (2013) The ConsensusPathDB interaction database: 2013 update. Nucleic Acids Res 41:D793–D800. https://doi.org/10.1093/nar/gks1055 CrossRefPubMedGoogle Scholar
  34. Kaneko KJ, DePamphilis ML (2013) TEAD4 establishes the energy homeostasis essential for blastocoel formation. Development 140:3680–3690. https://doi.org/10.1242/dev.093799 CrossRefPubMedPubMedCentralGoogle Scholar
  35. Koch U, Lehal R, Radtke F (2013) Stem cells living with a Notch. Development 140:689–704. https://doi.org/10.1242/dev.080614 CrossRefPubMedGoogle Scholar
  36. Kono K, Tamashiro DA, Alarcon VB (2014) Inhibition of RHO-ROCK signaling enhances ICM and suppresses TE characteristics through activation of Hippo signaling in the mouse blastocyst. Dev Biol 394:142–155. https://doi.org/10.1016/j.ydbio.2014.06.023 CrossRefPubMedPubMedCentralGoogle Scholar
  37. Korotkevich E, Niwayama R, Courtois A, Friese S, Berger N, Buchholz F, Hiiragi T (2017) The apical domain is required and sufficient for the first lineage segregation in the mouse embryo. Dev Cell 40:235–247, e237. https://doi.org/10.1016/j.devcel.2017.01.006 CrossRefPubMedPubMedCentralGoogle Scholar
  38. Kuckenberg P, Buhl S, Woynecki T et al (2010) The transcription factor TCFAP2C/AP-2gamma cooperates with CDX2 to maintain trophectoderm formation. Mol Cell Biol 30:3310–3320. https://doi.org/10.1128/MCB.01215-09 CrossRefPubMedPubMedCentralGoogle Scholar
  39. Latham KE, Solter D, Schultz RM (1991) Activation of a two-cell stage-specific gene following transfer of heterologous nuclei into enucleated mouse embryos. Mol Reprod Dev 30:182–186CrossRefPubMedGoogle Scholar
  40. Leung CY, Zhu M, Zernicka-Goetz M (2016) Polarity in cell-fate acquisition in the early mouse embryo. Curr Top Dev Biol 120:203–234. https://doi.org/10.1016/bs.ctdb.2016.04.008 CrossRefPubMedGoogle Scholar
  41. Li L, Lu X, Dean J (2013) The maternal to zygotic transition in mammals. Mol Asp Med 34:919–938. https://doi.org/10.1016/j.mam.2013.01.003 CrossRefGoogle Scholar
  42. Maitre JL, Niwayama R, Turlier H, Nedelec F, Hiiragi T (2015) Pulsatile cell-autonomous contractility drives compaction in the mouse embryo. Nat Cell Biol 17:849–855. https://doi.org/10.1038/ncb3185 CrossRefPubMedGoogle Scholar
  43. Maitre JL, Turlier H, Illukkumbura R, Eismann B, Niwayama R, Nedelec F, Hiiragi T (2016) Asymmetric division of contractile domains couples cell positioning and fate specification. Nature 536:344–348. https://doi.org/10.1038/nature18958 CrossRefPubMedPubMedCentralGoogle Scholar
  44. Manzanares M, Rodriguez TA (2013) Development: Hippo signalling turns the embryo inside out. Curr Biol 23:R559–R561. https://doi.org/10.1016/j.cub.2013.05.064 CrossRefPubMedGoogle Scholar
  45. Marcho C, Cui W, Mager J (2015) Epigenetic dynamics during preimplantation development. Reproduction 150:R109–R120. https://doi.org/10.1530/REP-15-0180 CrossRefPubMedPubMedCentralGoogle Scholar
  46. Marikawa Y, Alarcon VB (2009) Establishment of trophectoderm and inner cell mass lineages in the mouse embryo. Mol Reprod Dev 76:1019–1032. https://doi.org/10.1002/mrd.21057 CrossRefPubMedPubMedCentralGoogle Scholar
  47. Morris SA, Teo RT, Li H, Robson P, Glover DM, Zernicka-Goetz M (2010) Origin and formation of the first two distinct cell types of the inner cell mass in the mouse embryo. Proc Natl Acad Sci USA 107:6364–6369. https://doi.org/10.1073/pnas.0915063107 CrossRefPubMedPubMedCentralGoogle Scholar
  48. Nishioka N, Yamamoto S, Kiyonari H et al (2008) Tead4 is required for specification of trophectoderm in pre-implantation mouse embryos. Mech Dev 125:270–283. https://doi.org/10.1016/j.mod.2007.11.002 CrossRefPubMedGoogle Scholar
  49. Nishioka N, Inoue K, Adachi K et al (2009) The Hippo signaling pathway components Lats and Yap pattern Tead4 activity to distinguish mouse trophectoderm from inner cell mass. Dev Cell 16:398–410. https://doi.org/10.1016/j.devcel.2009.02.003 CrossRefPubMedGoogle Scholar
  50. Paul S, Knott JG (2014) Epigenetic control of cell fate in mouse blastocysts: the role of covalent histone modifications and chromatin remodeling. Mol Reprod Dev 81:171–182. https://doi.org/10.1002/mrd.22219 CrossRefPubMedGoogle Scholar
  51. Piras V, Tomita M, Selvarajoo K (2014) Transcriptome-wide variability in single embryonic development cells. Sci Rep 4:7137. https://doi.org/10.1038/srep07137 CrossRefPubMedPubMedCentralGoogle Scholar
  52. Plachta N, Bollenbach T, Pease S, Fraser SE, Pantazis P (2011) Oct4 kinetics predict cell lineage patterning in the early mammalian embryo. Nat Cell Biol 13:117–123. https://doi.org/10.1038/ncb2154 CrossRefPubMedGoogle Scholar
  53. Plusa B, Hadjantonakis AK, Gray D et al (2005) The first cleavage of the mouse zygote predicts the blastocyst axis. Nature 434:391–395. https://doi.org/10.1038/nature03388 CrossRefPubMedGoogle Scholar
  54. Ralston A, Cox BJ, Nishioka N et al (2010) Gata3 regulates trophoblast development downstream of Tead4 and in parallel to Cdx2. Development 137:395–403. https://doi.org/10.1242/dev.038828 CrossRefPubMedGoogle Scholar
  55. Rayon T, Menchero S, Nieto A et al (2014) Notch and hippo converge on Cdx2 to specify the trophectoderm lineage in the mouse blastocyst. Dev Cell 30:410–422. https://doi.org/10.1016/j.devcel.2014.06.019 CrossRefPubMedPubMedCentralGoogle Scholar
  56. Rossant J, Tam PP (2009) Blastocyst lineage formation, early embryonic asymmetries and axis patterning in the mouse. Development 136:701–713. https://doi.org/10.1242/dev.017178 CrossRefPubMedGoogle Scholar
  57. Rugg-Gunn PJ, Cox BJ, Ralston A, Rossant J (2010) Distinct histone modifications in stem cell lines and tissue lineages from the early mouse embryo. Proc Natl Acad Sci USA 107:10783–10790. https://doi.org/10.1073/pnas.0914507107 CrossRefPubMedPubMedCentralGoogle Scholar
  58. Saha B, Home P, Ray S et al (2013) EED and KDM6B coordinate the first mammalian cell lineage commitment to ensure embryo implantation. Mol Cell Biol 33:2691–2705. https://doi.org/10.1128/MCB.00069-13 CrossRefPubMedPubMedCentralGoogle Scholar
  59. Sakaue M, Ohta H, Kumaki Y et al (2010) DNA methylation is dispensable for the growth and survival of the extraembryonic lineages. Curr Biol 20:1452–1457. https://doi.org/10.1016/j.cub.2010.06.050 CrossRefPubMedGoogle Scholar
  60. Samarage CR, White MD, Alvarez YD et al (2015) Cortical tension allocates the first inner cells of the mammalian embryo. Dev Cell 34:435–447. https://doi.org/10.1016/j.devcel.2015.07.004 CrossRefPubMedGoogle Scholar
  61. Sarmento OF, Digilio LC, Wang Y, Perlin J, Herr JC, Allis CD, Coonrod SA (2004) Dynamic alterations of specific histone modifications during early murine development. J Cell Sci 117:4449–4459. https://doi.org/10.1242/jcs.01328 CrossRefPubMedGoogle Scholar
  62. Sasaki H (2015) Position- and polarity-dependent Hippo signaling regulates cell fates in preimplantation mouse embryos. Semin Cell Dev Biol 47–48:80–87. https://doi.org/10.1016/j.semcdb.2015.05.003 CrossRefPubMedGoogle Scholar
  63. Schultz RM (2002) The molecular foundations of the maternal to zygotic transition in the preimplantation embryo. Hum Reprod Update 8:323–331CrossRefPubMedGoogle Scholar
  64. Shi J, Chen Q, Li X et al (2015) Dynamic transcriptional symmetry-breaking in pre-implantation mammalian embryo development revealed by single-cell RNA-seq. Development 142:3468–3477. https://doi.org/10.1242/dev.123950 CrossRefPubMedGoogle Scholar
  65. Souilhol C, Cormier S, Tanigaki K, Babinet C, Cohen-Tannoudji M (2006) RBP-Jkappa-dependent notch signaling is dispensable for mouse early embryonic development. Mol Cell Biol 26:4769–4774. https://doi.org/10.1128/MCB.00319-06 CrossRefPubMedPubMedCentralGoogle Scholar
  66. Stanton JL, Green DP (2001) Meta-analysis of gene expression in mouse preimplantation embryo development. Mol Hum Reprod 7:545–552CrossRefPubMedGoogle Scholar
  67. Strumpf D, Mao CA, Yamanaka Y, Ralston A, Chawengsaksophak K, Beck F, Rossant J (2005) Cdx2 is required for correct cell fate specification and differentiation of trophectoderm in the mouse blastocyst. Development 132:2093–2102. https://doi.org/10.1242/dev.01801 CrossRefPubMedGoogle Scholar
  68. Torres-Padilla ME, Parfitt DE, Kouzarides T, Zernicka-Goetz M (2007) Histone arginine methylation regulates pluripotency in the early mouse embryo. Nature 445:214–218. https://doi.org/10.1038/nature05458 CrossRefPubMedPubMedCentralGoogle Scholar
  69. Tsukada Y, Fang J, Erdjument-Bromage H, Warren ME, Borchers CH, Tempst P, Zhang Y (2006) Histone demethylation by a family of JmjC domain-containing proteins. Nature 439:811–816. https://doi.org/10.1038/nature04433 CrossRefPubMedGoogle Scholar
  70. Tun T, Hamaguchi Y, Matsunami N, Furukawa T, Honjo T, Kawaichi M (1994) Recognition sequence of a highly conserved DNA binding protein RBP-J kappa. Nucleic Acids Res 22:965–971CrossRefPubMedPubMedCentralGoogle Scholar
  71. VerMilyea MD, O’Neill LP, Turner BM (2009) Transcription-independent heritability of induced histone modifications in the mouse preimplantation embryo. PLoS One 4:e6086. https://doi.org/10.1371/journal.pone.0006086 CrossRefPubMedPubMedCentralGoogle Scholar
  72. Watanabe T, Biggins JS, Tannan NB, Srinivas S (2014) Limited predictive value of blastomere angle of division in trophectoderm and inner cell mass specification. Development 141:2279–2288. https://doi.org/10.1242/dev.103267 CrossRefPubMedPubMedCentralGoogle Scholar
  73. Werling U, Schorle H (2002) Transcription factor gene AP-2 gamma essential for early murine development. Mol Cell Biol 22:3149–3156CrossRefPubMedPubMedCentralGoogle Scholar
  74. White MD, Angiolini JF, Alvarez YD et al (2016a) Long-lived binding of Sox2 to DNA predicts cell fate in the four-cell mouse embryo. Cell 165:75–87. https://doi.org/10.1016/j.cell.2016.02.032 CrossRefPubMedGoogle Scholar
  75. White MD, Bissiere S, Alvarez YD, Plachta N (2016b) Mouse embryo compaction. Curr Top Dev Biol 120:235–258. https://doi.org/10.1016/bs.ctdb.2016.04.005 CrossRefPubMedGoogle Scholar
  76. Wicklow E, Blij S, Frum T, Hirate Y, Lang RA, Sasaki H, Ralston A (2014) HIPPO pathway members restrict SOX2 to the inner cell mass where it promotes ICM fates in the mouse blastocyst. PLoS Genet 10:e1004618. https://doi.org/10.1371/journal.pgen.1004618 CrossRefPubMedPubMedCentralGoogle Scholar
  77. Yagi R, Kohn MJ, Karavanova I, Kaneko KJ, Vullhorst D, DePamphilis ML, Buonanno A (2007) Transcription factor TEAD4 specifies the trophectoderm lineage at the beginning of mammalian development. Development 134:3827–3836. https://doi.org/10.1242/dev.010223 CrossRefPubMedGoogle Scholar
  78. Yamanaka Y, Ralston A, Stephenson RO, Rossant J (2006) Cell and molecular regulation of the mouse blastocyst. Dev Dyn 235:2301–2314. https://doi.org/10.1002/dvdy.20844 CrossRefPubMedGoogle Scholar
  79. Yamanaka Y, Lanner F, Rossant J (2010) FGF signal-dependent segregation of primitive endoderm and epiblast in the mouse blastocyst. Development 137:715–724. https://doi.org/10.1242/dev.043471 CrossRefPubMedGoogle Scholar
  80. Yeap LS, Hayashi K, Surani MA (2009) ERG-associated protein with SET domain (ESET)-Oct4 interaction regulates pluripotency and represses the trophectoderm lineage. Epigenetics Chromatin 2:12. https://doi.org/10.1186/1756-8935-2-12 CrossRefPubMedPubMedCentralGoogle Scholar
  81. Yu FX, Guan KL (2013) The Hippo pathway: regulators and regulations. Genes Dev 27:355–371. https://doi.org/10.1101/gad.210773.112 CrossRefPubMedPubMedCentralGoogle Scholar
  82. Zernicka-Goetz M, Morris SA, Bruce AW (2009) Making a firm decision: multifaceted regulation of cell fate in the early mouse embryo. Nat Rev Genet 10:467–477. https://doi.org/10.1038/nrg2564 CrossRefPubMedGoogle Scholar
  83. Zhang K, Dai X, Wallingford MC, Mager J (2013a) Depletion of Suds3 reveals an essential role in early lineage specification. Dev Biol 373:359–372. https://doi.org/10.1016/j.ydbio.2012.10.026 CrossRefPubMedGoogle Scholar
  84. Zhang K, Haversat JM, Mager J (2013b) CTR9/PAF1c regulates molecular lineage identity, histone H3K36 trimethylation and genomic imprinting during preimplantation development. Dev Biol 383:15–27. https://doi.org/10.1016/j.ydbio.2013.09.005 CrossRefPubMedPubMedCentralGoogle Scholar
  85. Zheng Z, Li H, Zhang Q, Yang L, Qi H (2016) Unequal distribution of 16S mtrRNA at the 2-cell stage regulates cell lineage allocations in mouse embryos. Reproduction 151:351–367. https://doi.org/10.1530/REP-15-0301 CrossRefPubMedGoogle Scholar
  86. Zhou LQ, Dean J (2015) Reprogramming the genome to totipotency in mouse embryos. Trends Cell Biol 25:82–91. https://doi.org/10.1016/j.tcb.2014.09.006 CrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  1. 1.Department of Veterinary and Animal SciencesUniversity of MassachusettsAmherstUSA

Personalised recommendations