CHD1 Controls Cell Lineage Specification Through Zygotic Genome Activation

Chapter
Part of the Advances in Anatomy, Embryology and Cell Biology book series (ADVSANAT, volume 229)

Abstract

In mammals, the processes spanning from fertilization to the generation of a new organism are very complex and are controlled by multiple genes. Life begins with the encounter of eggs and spermatozoa, in which gene expression is inactive prior to fertilization. After several cell divisions, cells arise that are specialized in implantation, a developmental process unique to mammals. Cells involved in the establishment and maintenance of implantation differentiate from totipotent embryos, and the remaining cells generate the embryo proper. Although this process of differentiation, termed cell lineage specification, is supported by various gene expression networks, many components have yet to be identified. Moreover, despite extensive research it remains unclear which genes are controlled by each of the factors involved. Although it has become clear that epigenetic factors regulate gene expression, elucidation of the underlying mechanisms remains challenging. In this chapter, we propose that the chromatin remodeling factor CHD1, together with epigenetic factors, is involved in a subset of gene expression networks involved in processes spanning from zygotic genome activation to cell lineage specification.

References

  1. Abdalla H, Yoshizawa Y, Hochi S (2009) Active demethylation of paternal genome in mammalian zygotes. J Reprod Dev 55(4):356–360CrossRefPubMedGoogle Scholar
  2. Albert M, Helin K (2010) Histone methyltransferases in cancer. Semin Cell Dev Biol 21(2):209–220. https://doi.org/10.1016/j.semcdb.2009.10.007 CrossRefPubMedGoogle Scholar
  3. Albert M, Peters AH (2009) Genetic and epigenetic control of early mouse development. Curr Opin Genet Dev 19(2):113–121. https://doi.org/10.1016/j.gde.2009.03.004 CrossRefPubMedGoogle Scholar
  4. Anani S, Bhat S, Honma-Yamanaka N, Krawchuk D, Yamanaka Y (2014) Initiation of Hippo signaling is linked to polarity rather than to cell position in the pre-implantation mouse embryo. Development 141(14):2813–2824. https://doi.org/10.1242/dev.107276 CrossRefPubMedGoogle Scholar
  5. Andreu-Vieyra CV, Chen R, Agno JE, Glaser S, Anastassiadis K, Stewart AF, Matzuk MM (2010) MLL2 is required in oocytes for bulk histone 3 lysine 4 trimethylation and transcriptional silencing. PLoS Biol 8(8):e1000453. https://doi.org/10.1371/journal.pbio.1000453 CrossRefPubMedPubMedCentralGoogle Scholar
  6. Bernstein BE, Meissner A, Lander ES (2007) The mammalian epigenome. Cell 128(4):669–681. https://doi.org/10.1016/j.cell.2007.01.033 CrossRefPubMedGoogle Scholar
  7. Bultman SJ, Gebuhr TC, Pan H, Svoboda P, Schultz RM, Magnuson T (2006) Maternal BRG1 regulates zygotic genome activation in the mouse. Genes Dev 20(13):1744–1754. https://doi.org/10.1101/gad.1435106 CrossRefPubMedPubMedCentralGoogle Scholar
  8. Burns KH, Viveiros MM, Ren Y, Wang P, DeMayo FJ, Frail DE, Eppig JJ, Matzuk MM (2003) Roles of NPM2 in chromatin and nucleolar organization in oocytes and embryos. Science 300(5619):633–636. https://doi.org/10.1126/science.1081813 CrossRefPubMedGoogle Scholar
  9. Burton A, Torres-Padilla ME (2010) Epigenetic reprogramming and development: a unique heterochromatin organization in the preimplantation mouse embryo. Brief Funct Genomics 9(5–6):444–454. https://doi.org/10.1093/bfgp/elq027 CrossRefPubMedPubMedCentralGoogle Scholar
  10. Chazaud C, Yamanaka Y, Pawson T, Rossant J (2006) Early lineage segregation between epiblast and primitive endoderm in mouse blastocysts through the Grb2-MAPK pathway. Dev Cell 10(5):615–624. https://doi.org/10.1016/j.devcel.2006.02.020 CrossRefPubMedGoogle Scholar
  11. Chen L, Yabuuchi A, Eminli S, Takeuchi A, Lu CW, Hochedlinger K, Daley GQ (2009) Cross-regulation of the Nanog and Cdx2 promoters. Cell Res 19(9):1052–1061. https://doi.org/10.1038/cr.2009.79 CrossRefPubMedGoogle Scholar
  12. Cockburn K, Rossant J (2010) Making the blastocyst: lessons from the mouse. J Clin Invest 120(4):995–1003. https://doi.org/10.1172/JCI41229 CrossRefPubMedPubMedCentralGoogle Scholar
  13. Cockburn K, Biechele S, Garner J, Rossant J (2013) The Hippo pathway member Nf2 is required for inner cell mass specification. Curr Biol 23(13):1195–1201. https://doi.org/10.1016/j.cub.2013.05.044 CrossRefPubMedGoogle Scholar
  14. Cock-Rada AM, Medjkane S, Janski N, Yousfi N, Perichon M, Chaussepied M, Chluba J, Langsley G, Weitzman JB (2012) SMYD3 promotes cancer invasion by epigenetic upregulation of the metalloproteinase MMP-9. Cancer Res 72(3):810–820. https://doi.org/10.1158/0008-5472.CAN-11-1052 CrossRefPubMedGoogle Scholar
  15. Corry GN, Tanasijevic B, Barry ER, Krueger W, Rasmussen TP (2009) Epigenetic regulatory mechanisms during preimplantation development. Birth Defects Res C Embryo Today 87(4):297–313. https://doi.org/10.1002/bdrc.20165 CrossRefPubMedGoogle Scholar
  16. Dahl JA, Jung I, Aanes H, Greggains GD, Manaf A, Lerdrup M, Li G, Kuan S, Li B, Lee AY, Preissl S, Jermstad I, Haugen MH, Suganthan R, Bjoras M, Hansen K, Dalen KT, Fedorcsak P, Ren B, Klungland A (2016) Broad histone H3K4me3 domains in mouse oocytes modulate maternal-to-zygotic transition. Nature 537(7621):548–552. https://doi.org/10.1038/nature19360 CrossRefPubMedGoogle Scholar
  17. Ema M, Mori D, Niwa H, Hasegawa Y, Yamanaka Y, Hitoshi S, Mimura J, Kawabe Y, Hosoya T, Morita M, Shimosato D, Uchida K, Suzuki N, Yanagisawa J, Sogawa K, Rossant J, Yamamoto M, Takahashi S, Fujii-Kuriyama Y (2008) Kruppel-like factor 5 is essential for blastocyst development and the normal self-renewal of mouse ESCs. Cell Stem Cell 3(5):555–567. https://doi.org/10.1016/j.stem.2008.09.003 CrossRefPubMedGoogle Scholar
  18. Frankenberg S, Gerbe F, Bessonnard S, Belville C, Pouchin P, Bardot O, Chazaud C (2011) Primitive endoderm differentiates via a three-step mechanism involving Nanog and RTK signaling. Dev Cell 21(6):1005–1013. https://doi.org/10.1016/j.devcel.2011.10.019 CrossRefPubMedGoogle Scholar
  19. Gaspar-Maia A, Alajem A, Polesso F, Sridharan R, Mason MJ, Heidersbach A, Ramalho-Santos J, McManus MT, Plath K, Meshorer E, Ramalho-Santos M (2009) Chd1 regulates open chromatin and pluripotency of embryonic stem cells. Nature 460(7257):863–868. https://doi.org/10.1038/nature08212 PubMedPubMedCentralGoogle Scholar
  20. Guzman-Ayala M, Sachs M, Koh FM, Onodera C, Bulut-Karslioglu A, Lin CJ, Wong P, Nitta R, Song JS, Ramalho-Santos M (2015) Chd1 is essential for the high transcriptional output and rapid growth of the mouse epiblast. Development 142(1):118–127. https://doi.org/10.1242/dev.114843 CrossRefPubMedPubMedCentralGoogle Scholar
  21. Hamatani T, Carter MG, Sharov AA, Ko MS (2004) Dynamics of global gene expression changes during mouse preimplantation development. Dev Cell 6(1):117–131CrossRefPubMedGoogle Scholar
  22. Hirate Y, Cockburn K, Rossant J, Sasaki H (2012) Tead4 is constitutively nuclear, while nuclear vs. cytoplasmic Yap distribution is regulated in preimplantation mouse embryos. Proc Natl Acad Sci USA 109(50):E3389–3390; author reply E3391–3382. doi:https://doi.org/10.1073/pnas.1211810109
  23. Hirate Y, Hirahara S, Inoue K, Suzuki A, Alarcon VB, Akimoto K, Hirai T, Hara T, Adachi M, Chida K, Ohno S, Marikawa Y, Nakao K, Shimono A, Sasaki H (2013) Polarity-dependent distribution of angiomotin localizes Hippo signaling in preimplantation embryos. Curr Biol 23(13):1181–1194. https://doi.org/10.1016/j.cub.2013.05.014 CrossRefPubMedPubMedCentralGoogle Scholar
  24. Ho L, Crabtree GR (2010) Chromatin remodelling during development. Nature 463(7280):474–484. https://doi.org/10.1038/nature08911 CrossRefPubMedPubMedCentralGoogle Scholar
  25. Kageyama S, Liu H, Kaneko N, Ooga M, Nagata M, Aoki F (2007) Alterations in epigenetic modifications during oocyte growth in mice. Reproduction 133(1):85–94. https://doi.org/10.1530/REP-06-0025 CrossRefPubMedGoogle Scholar
  26. Kang M, Piliszek A, Artus J, Hadjantonakis AK (2013) FGF4 is required for lineage restriction and salt-and-pepper distribution of primitive endoderm factors but not their initial expression in the mouse. Development 140(2):267–279. https://doi.org/10.1242/dev.084996 CrossRefPubMedPubMedCentralGoogle Scholar
  27. Kari V, Mansour WY, Raul SK, Baumgart SJ, Mund A, Grade M, Sirma H, Simon R, Will H, Dobbelstein M, Dikomey E, Johnsen SA (2016) Loss of CHD1 causes DNA repair defects and enhances prostate cancer therapeutic responsiveness. EMBO Rep 17(11):1609–1623. https://doi.org/10.15252/embr.201642352 CrossRefPubMedPubMedCentralGoogle Scholar
  28. Konev AY, Tribus M, Park SY, Podhraski V, Lim CY, Emelyanov AV, Vershilova E, Pirrotta V, Kadonaga JT, Lusser A, Fyodorov DV (2007) CHD1 motor protein is required for deposition of histone variant H3.3 into chromatin in vivo. Science 317(5841):1087–1090. https://doi.org/10.1126/science.1145339 CrossRefPubMedPubMedCentralGoogle Scholar
  29. Lepikhov K, Walter J (2004) Differential dynamics of histone H3 methylation at positions K4 and K9 in the mouse zygote. BMC Dev Biol 4:12. https://doi.org/10.1186/1471-213X-4-12 CrossRefPubMedPubMedCentralGoogle Scholar
  30. Levey IL, Troike DE, Brinster RL (1977) Effects of alpha-amanitin on the development of mouse ova in culture. J Reprod Fertil 50(1):147–150CrossRefPubMedGoogle Scholar
  31. Li L, Zheng P, Dean J (2010) Maternal control of early mouse development. Development 137(6):859–870. https://doi.org/10.1242/dev.039487 CrossRefPubMedPubMedCentralGoogle Scholar
  32. Lin SC, Wani MA, Whitsett JA, Wells JM (2010) Klf5 regulates lineage formation in the pre-implantation mouse embryo. Development 137(23):3953–3963. https://doi.org/10.1242/dev.054775 CrossRefPubMedPubMedCentralGoogle Scholar
  33. Lindeman LC, Andersen IS, Reiner AH, Li N, Aanes H, Ostrup O, Winata C, Mathavan S, Muller F, Alestrom P, Collas P (2011) Prepatterning of developmental gene expression by modified histones before zygotic genome activation. Dev Cell 21(6):993–1004. https://doi.org/10.1016/j.devcel.2011.10.008 CrossRefPubMedGoogle Scholar
  34. Liu C, Wang C, Wang K, Liu L, Shen Q, Yan K, Sun X, Chen J, Liu J, Ren H, Liu H, Xu Z, Hu S, Xu D, Fan Y (2013) SMYD3 as an oncogenic driver in prostate cancer by stimulation of androgen receptor transcription. J Natl Cancer Inst 105(22):1719–1728. https://doi.org/10.1093/jnci/djt304 CrossRefPubMedGoogle Scholar
  35. Medjkane S, Cock-Rada A, Weitzman JB (2012) Role of the SMYD3 histone methyltransferase in tumorigenesis: local or global effects? Cell Cycle 11(10):1865. https://doi.org/10.4161/cc.20415 CrossRefPubMedGoogle Scholar
  36. Minami N, Suzuki T, Tsukamoto S (2007) Zygotic gene activation and maternal factors in mammals. J Reprod Dev 53(4):707–715CrossRefPubMedGoogle Scholar
  37. Mitsui K, Tokuzawa Y, Itoh H, Segawa K, Murakami M, Takahashi K, Maruyama M, Maeda M, Yamanaka S (2003) The homeoprotein Nanog is required for maintenance of pluripotency in mouse epiblast and ES cells. Cell 113(5):631–642CrossRefPubMedGoogle Scholar
  38. Morgan HD, Santos F, Green K, Dean W, Reik W (2005) Epigenetic reprogramming in mammals. Hum Mol Genet 14(Spec No 1):R47–58. doi:https://doi.org/10.1093/hmg/ddi114
  39. Morris SA, Teo RT, Li H, Robson P, Glover DM, Zernicka-Goetz M (2010) Origin and formation of the first two distinct cell types of the inner cell mass in the mouse embryo. Proc Natl Acad Sci USA 107(14):6364–6369. https://doi.org/10.1073/pnas.0915063107 CrossRefPubMedPubMedCentralGoogle Scholar
  40. Nichols J, Zevnik B, Anastassiadis K, Niwa H, Klewe-Nebenius D, Chambers I, Scholer H, Smith A (1998) Formation of pluripotent stem cells in the mammalian embryo depends on the POU transcription factor Oct4. Cell 95(3):379–391CrossRefPubMedGoogle Scholar
  41. Nishioka N, Inoue K, Adachi K, Kiyonari H, Ota M, Ralston A, Yabuta N, Hirahara S, Stephenson RO, Ogonuki N, Makita R, Kurihara H, Morin-Kensicki EM, Nojima H, Rossant J, Nakao K, Niwa H, Sasaki H (2009) The Hippo signaling pathway components Lats and Yap pattern Tead4 activity to distinguish mouse trophectoderm from inner cell mass. Dev Cell 16(3):398–410. https://doi.org/10.1016/j.devcel.2009.02.003 CrossRefPubMedGoogle Scholar
  42. Niwa H, Toyooka Y, Shimosato D, Strumpf D, Takahashi K, Yagi R, Rossant J (2005) Interaction between Oct3/4 and Cdx2 determines trophectoderm differentiation. Cell 123(5):917–929. https://doi.org/10.1016/j.cell.2005.08.040 CrossRefPubMedGoogle Scholar
  43. Nowak SJ, Corces VG (2004) Phosphorylation of histone H3: a balancing act between chromosome condensation and transcriptional activation. Trends Genet 20(4):214–220. https://doi.org/10.1016/j.tig.2004.02.007 CrossRefPubMedGoogle Scholar
  44. Ostrup O, Andersen IS, Collas P (2013) Chromatin-linked determinants of zygotic genome activation. Cell Mol Life Sci 70(8):1425–1437. https://doi.org/10.1007/s00018-012-1143-x CrossRefPubMedGoogle Scholar
  45. Payer B, Saitou M, Barton SC, Thresher R, Dixon JP, Zahn D, Colledge WH, Carlton MB, Nakano T, Surani MA (2003) Stella is a maternal effect gene required for normal early development in mice. Curr Biol 13(23):2110–2117CrossRefPubMedGoogle Scholar
  46. Ralston A, Cox BJ, Nishioka N, Sasaki H, Chea E, Rugg-Gunn P, Guo G, Robson P, Draper JS, Rossant J (2010) Gata3 regulates trophoblast development downstream of Tead4 and in parallel to Cdx2. Development 137(3):395–403. https://doi.org/10.1242/dev.038828 CrossRefPubMedGoogle Scholar
  47. Ramos SB, Stumpo DJ, Kennington EA, Phillips RS, Bock CB, Ribeiro-Neto F, Blackshear PJ (2004) The CCCH tandem zinc-finger protein Zfp36l2 is crucial for female fertility and early embryonic development. Development 131(19):4883–4893. https://doi.org/10.1242/dev.01336 CrossRefPubMedGoogle Scholar
  48. Rasmussen TP, Corry GN (2010) Epigenetic pre-patterning and dynamics during initial stages of mammalian preimplantation development. J Cell Physiol 225(2):333–336. https://doi.org/10.1002/jcp.22293 CrossRefPubMedGoogle Scholar
  49. Roper S, Hemberger M (2009) Defining pathways that enforce cell lineage specification in early development and stem cells. Cell Cycle 8(10):1515–1525. https://doi.org/10.4161/cc.8.10.8381 CrossRefPubMedGoogle Scholar
  50. Sarmento OF, Digilio LC, Wang Y, Perlin J, Herr JC, Allis CD, Coonrod SA (2004) Dynamic alterations of specific histone modifications during early murine development. J Cell Sci 117(Pt 19):4449–4459. https://doi.org/10.1242/jcs.01328 CrossRefPubMedGoogle Scholar
  51. Schneider R, Grosschedl R (2007) Dynamics and interplay of nuclear architecture, genome organization, and gene expression. Genes Dev 21(23):3027–3043. https://doi.org/10.1101/gad.1604607 CrossRefPubMedGoogle Scholar
  52. Schrode N, Saiz N, Di Talia S, Hadjantonakis AK (2014) GATA6 levels modulate primitive endoderm cell fate choice and timing in the mouse blastocyst. Dev Cell 29(4):454–467. https://doi.org/10.1016/j.devcel.2014.04.011 CrossRefPubMedPubMedCentralGoogle Scholar
  53. Schultz RM (1993) Regulation of zygotic gene activation in the mouse. BioEssays 15(8):531–538. https://doi.org/10.1002/bies.950150806 CrossRefPubMedGoogle Scholar
  54. Shao GB, Ding HM, Gong AH (2008) Role of histone methylation in zygotic genome activation in the preimplantation mouse embryo. In Vitro Cell Dev Biol Anim 44(3–4):115–120. https://doi.org/10.1007/s11626-008-9082-4 CrossRefPubMedGoogle Scholar
  55. Shi L, Wu J (2009) Epigenetic regulation in mammalian preimplantation embryo development. Reprod Biol Endocrinol 7:59. https://doi.org/10.1186/1477-7827-7-59 CrossRefPubMedPubMedCentralGoogle Scholar
  56. Shilatifard A (2006) Chromatin modifications by methylation and ubiquitination: implications in the regulation of gene expression. Annu Rev Biochem 75:243–269. https://doi.org/10.1146/annurev.biochem.75.103004.142422 CrossRefPubMedGoogle Scholar
  57. Simic R, Lindstrom DL, Tran HG, Roinick KL, Costa PJ, Johnson AD, Hartzog GA, Arndt KM (2003) Chromatin remodeling protein Chd1 interacts with transcription elongation factors and localizes to transcribed genes. EMBO J 22(8):1846–1856. https://doi.org/10.1093/emboj/cdg179 CrossRefPubMedPubMedCentralGoogle Scholar
  58. Sims RJ 3rd, Chen CF, Santos-Rosa H, Kouzarides T, Patel SS, Reinberg D (2005) Human but not yeast CHD1 binds directly and selectively to histone H3 methylated at lysine 4 via its tandem chromodomains. J Biol Chem 280(51):41789–41792. https://doi.org/10.1074/jbc.C500395200 CrossRefPubMedPubMedCentralGoogle Scholar
  59. Sims RJ 3rd, Millhouse S, Chen CF, Lewis BA, Erdjument-Bromage H, Tempst P, Manley JL, Reinberg D (2007) Recognition of trimethylated histone H3 lysine 4 facilitates the recruitment of transcription postinitiation factors and pre-mRNA splicing. Mol Cell 28(4):665–676. https://doi.org/10.1016/j.molcel.2007.11.010 CrossRefPubMedPubMedCentralGoogle Scholar
  60. Singh AM, Hamazaki T, Hankowski KE, Terada N (2007) A heterogeneous expression pattern for Nanog in embryonic stem cells. Stem Cells 25(10):2534–2542. https://doi.org/10.1634/stemcells.2007-0126 CrossRefPubMedGoogle Scholar
  61. Sterner DE, Berger SL (2000) Acetylation of histones and transcription-related factors. Microbiol Mol Biol Rev 64(2):435–459CrossRefPubMedPubMedCentralGoogle Scholar
  62. Stokes DG, Tartof KD, Perry RP (1996) CHD1 is concentrated in interbands and puffed regions of Drosophila polytene chromosomes. Proc Natl Acad Sci USA 93(14):7137–7142CrossRefPubMedPubMedCentralGoogle Scholar
  63. Strumpf D, Mao CA, Yamanaka Y, Ralston A, Chawengsaksophak K, Beck F, Rossant J (2005) Cdx2 is required for correct cell fate specification and differentiation of trophectoderm in the mouse blastocyst. Development 132(9):2093–2102. https://doi.org/10.1242/dev.01801 CrossRefPubMedGoogle Scholar
  64. Suzuki S, Nozawa Y, Tsukamoto S, Kaneko T, Imai H, Minami N (2015a) Histone methyltransferase Smyd3 regulates early embryonic lineage commitment in mice. Reproduction 150(1):21–30. https://doi.org/10.1530/REP-15-0019 CrossRefPubMedGoogle Scholar
  65. Suzuki S, Nozawa Y, Tsukamoto S, Kaneko T, Manabe I, Imai H, Minami N (2015b) CHD1 acts via the Hmgpi pathway to regulate mouse early embryogenesis. Development 142(13):2375–2384. https://doi.org/10.1242/dev.120493 CrossRefPubMedGoogle Scholar
  66. Tong ZB, Gold L, Pfeifer KE, Dorward H, Lee E, Bondy CA, Dean J, Nelson LM (2000) Mater, a maternal effect gene required for early embryonic development in mice. Nat Genet 26(3):267–268. https://doi.org/10.1038/81547 CrossRefPubMedGoogle Scholar
  67. Tsukamoto S, Kuma A, Murakami M, Kishi C, Yamamoto A, Mizushima N (2008) Autophagy is essential for preimplantation development of mouse embryos. Science 321(5885):117–120. https://doi.org/10.1126/science.1154822 CrossRefPubMedGoogle Scholar
  68. Wang H, Dey SK (2006) Roadmap to embryo implantation: clues from mouse models. Nat Rev Genet 7(3):185–199. https://doi.org/10.1038/nrg1808 CrossRefPubMedGoogle Scholar
  69. Warner CM, Versteegh LR (1974) In vivo and in vitro effect of alpha-amanitin on preimplantation mouse embryo RNA polymerase. Nature 248(5450):678–680CrossRefPubMedGoogle Scholar
  70. Woodage T, Basrai MA, Baxevanis AD, Hieter P, Collins FS (1997) Characterization of the CHD family of proteins. Proc Natl Acad Sci USA 94(21):11472–11477CrossRefPubMedPubMedCentralGoogle Scholar
  71. Wu X, Viveiros MM, Eppig JJ, Bai Y, Fitzpatrick SL, Matzuk MM (2003) Zygote arrest 1 (Zar1) is a novel maternal-effect gene critical for the oocyte-to-embryo transition. Nat Genet 33(2):187–191. https://doi.org/10.1038/ng1079 CrossRefPubMedGoogle Scholar
  72. Yagi R, Kohn MJ, Karavanova I, Kaneko KJ, Vullhorst D, DePamphilis ML, Buonanno A (2007) Transcription factor TEAD4 specifies the trophectoderm lineage at the beginning of mammalian development. Development 134(21):3827–3836. https://doi.org/10.1242/dev.010223 CrossRefPubMedGoogle Scholar
  73. Yamada M, Hamatani T, Akutsu H, Chikazawa N, Kuji N, Yoshimura Y, Umezawa A (2010) Involvement of a novel preimplantation-specific gene encoding the high mobility group box protein Hmgpi in early embryonic development. Hum Mol Genet 19(3):480–493. https://doi.org/10.1093/hmg/ddp512 CrossRefPubMedGoogle Scholar
  74. Yamanaka Y, Lanner F, Rossant J (2010) FGF signal-dependent segregation of primitive endoderm and epiblast in the mouse blastocyst. Development 137(5):715–724. https://doi.org/10.1242/dev.043471 CrossRefPubMedGoogle Scholar
  75. Yoshikawa T, Piao Y, Zhong J, Matoba R, Carter MG, Wang Y, Goldberg I, Ko MS (2006) High-throughput screen for genes predominantly expressed in the ICM of mouse blastocysts by whole mount in situ hybridization. Gene Expr Patterns 6(2):213–224. https://doi.org/10.1016/j.modgep.2005.06.003 CrossRefPubMedGoogle Scholar
  76. Zhang Y, Reinberg D (2001) Transcription regulation by histone methylation: interplay between different covalent modifications of the core histone tails. Genes Dev 15(18):2343–2360. https://doi.org/10.1101/gad.927301 CrossRefPubMedGoogle Scholar
  77. Zhang B, Zheng H, Huang B, Li W, Xiang Y, Peng X, Ming J, Wu X, Zhang Y, Xu Q, Liu W, Kou X, Zhao Y, He W, Li C, Chen B, Li Y, Wang Q, Ma J, Yin Q, Kee K, Meng A, Gao S, Xu F, Na J, Xie W (2016a) Allelic reprogramming of the histone modification H3K4me3 in early mammalian development. Nature 537(7621):553–557. https://doi.org/10.1038/nature19361 CrossRefPubMedGoogle Scholar
  78. Zhang K, Rajput SK, Wang S, Folger JK, Knott JG, Smith GW (2016b) CHD1 regulates deposition of histone variant H3.3 during bovine early embryonic development. Biol Reprod 94(6):140. https://doi.org/10.1095/biolreprod.116.138693 CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  1. 1.Technology and Development Team for Mammalian Genome DynamicsRIKEN BioResource CenterTsukubaJapan
  2. 2.Laboratory of Reproductive Biology, Graduate School of AgricultureKyoto UniversityKyotoJapan

Personalised recommendations