Chromatin Remodelling Proteins and Cell Fate Decisions in Mammalian Preimplantation Development

Part of the Advances in Anatomy, Embryology and Cell Biology book series (ADVSANAT, volume 229)


The very first cell divisions in mammalian embryogenesis produce a ball of cells, each with the potential to form any cell in the developing embryo or placenta. At some point, the embryo produces enough cells that some are located on the outside of the embryo, while others are completely surrounded by other cells. It is at this point that cells undergo the very first lineage commitment event: outer cells form the trophectoderm and lose the potential to form embryonic lineages, while inner cells form the Inner Cell Mass, which retain embryonic potential. Cell identity is defined by gene expression patterns, and gene expression is largely controlled by how the DNA is packaged into chromatin. A number of protein complexes exist which are able to use the energy of ATP to remodel chromatin: that is, to alter the nucleosome topology of chromatin. Here, we summarise the evidence that chromatin remodellers play essential roles in the successful completion of preimplantation development in mammals and describe recent efforts to understand the molecular mechanisms through which chromatin remodellers facilitate the successful completion of the first cell fate decisions in mammalian embryogenesis.


  1. Ahringer J (2000) NuRD and SIN3 histone deacetylase complexes in development. Trends Genet 16:351–356CrossRefPubMedGoogle Scholar
  2. Aiken CE, Swoboda PP, Skepper JN, Johnson MH (2004) The direct measurement of embryogenic volume and nucleo-cytoplasmic ratio during mouse pre-implantation development. Reproduction 128:527–535. CrossRefPubMedGoogle Scholar
  3. Allen HF, Wade PA, Kutateladze TG (2013) The NuRD architecture. Cell Mol Life Sci 70:3513–3524. CrossRefPubMedPubMedCentralGoogle Scholar
  4. Bao Y, Shen X (2007) INO80 subfamily of chromatin remodeling complexes. Mutat Res 618:18–29. CrossRefPubMedPubMedCentralGoogle Scholar
  5. Bultman S, Gebuhr T, Yee D et al (2000) A Brg1 null mutation in the mouse reveals functional differences among mammalian SWI/SNF complexes. Mol Cell 6:1287–1295CrossRefPubMedGoogle Scholar
  6. Carey TS, Cao Z, Choi I, Ganguly A, Wilson CA, Paul S, Knott JG (2015) BRG1 governs Nanog transcription in early mouse embryos and embryonic stem cells via antagonism of histone H3 lysine 9/14 acetylation. Mol Cell Biol 35:4158–4169. CrossRefPubMedPubMedCentralGoogle Scholar
  7. Carson DD, Bagchi I, Dey SK, Enders AC, Fazleabas AT, Lessey BA, Yoshinaga K (2000) Embryo implantation. Dev Biol 223:217–237. CrossRefPubMedGoogle Scholar
  8. Chazaud C, Yamanaka Y (2016) Lineage specification in the mouse preimplantation embryo. Development 143:1063–1074. CrossRefPubMedGoogle Scholar
  9. Clapier CR, Cairns BR (2009) The biology of chromatin remodeling complexes. Annu Rev Biochem 78:273–304. CrossRefPubMedGoogle Scholar
  10. de Dieuleveult M, Yen K, Hmitou I et al (2016) Genome-wide nucleosome specificity and function of chromatin remodellers in ES cells. Nature 530:113–116. CrossRefPubMedPubMedCentralGoogle Scholar
  11. Dietrich JE, Hiiragi T (2007) Stochastic patterning in the mouse pre-implantation embryo. Development 134:4219–4231. CrossRefPubMedGoogle Scholar
  12. Dietrich JE, Panavaite L, Gunther S et al (2015) Venus trap in the mouse embryo reveals distinct molecular dynamics underlying specification of first embryonic lineages. EMBO Rep 16:1005–1021. CrossRefPubMedPubMedCentralGoogle Scholar
  13. Ducibella T, Ukena T, Karnovsky M, Anderson E (1977) Changes in cell surface and cortical cytoplasmic organization during early embryogenesis in the preimplantation mouse embryo. J Cell Biol 74:153–167CrossRefPubMedPubMedCentralGoogle Scholar
  14. Enver T, Pera M, Peterson C, Andrews PW (2009) Stem cell states, fates, and the rules of attraction. Cell Stem Cell 4:387–397CrossRefPubMedGoogle Scholar
  15. Fleming TP, Pickering SJ (1985) Maturation and polarization of the endocytotic system in outside blastomeres during mouse preimplantation development. J Embryol Exp Morphol 89:175–208PubMedGoogle Scholar
  16. Gao X, Tate P, Hu P, Tjian R, Skarnes WC, Wang Z (2008) ES cell pluripotency and germ-layer formation require the SWI/SNF chromatin remodeling component BAF250a. Proc Natl Acad Sci USA 105:6656–6661. CrossRefPubMedPubMedCentralGoogle Scholar
  17. Gardner RL, Rossant J (1979) Investigation of the fate of 4-5 day post-coitum mouse inner cell mass cells by blastocyst injection. J Embryol Exp Morphol 52:141–152PubMedGoogle Scholar
  18. Gerhold CB, Gasser SM (2014) INO80 and SWR complexes: relating structure to function in chromatin remodeling. Trends Cell Biol 24:619–631. CrossRefPubMedGoogle Scholar
  19. Guidi CJ, Sands AT, Zambrowicz BP et al (2001) Disruption of Ini1 leads to peri-implantation lethality and tumorigenesis in mice. Mol Cell Biol 21:3598–3603. CrossRefPubMedPubMedCentralGoogle Scholar
  20. Gunther K, Rust M, Leers J et al (2013) Differential roles for MBD2 and MBD3 at methylated CpG islands, active promoters and binding to exon sequences. Nucleic Acids Res 41:3010–3021. CrossRefPubMedPubMedCentralGoogle Scholar
  21. Hargreaves DC, Crabtree GR (2011) ATP-dependent chromatin remodeling: genetics, genomics and mechanisms. Cell Res 21:396–420.
  22. Ho L, Crabtree GR (2010) Chromatin remodelling during development. Nature 463:474–484. CrossRefPubMedPubMedCentralGoogle Scholar
  23. Ho L, Jothi R, Ronan JL, Cui K, Zhao K, Crabtree GR (2009a) An embryonic stem cell chromatin remodeling complex, esBAF, is an essential component of the core pluripotency transcriptional network. Proc Natl Acad Sci USA 106:5187–5191. CrossRefPubMedPubMedCentralGoogle Scholar
  24. Ho L, Ronan JL, Wu J et al (2009b) An embryonic stem cell chromatin remodeling complex, esBAF, is essential for embryonic stem cell self-renewal and pluripotency. Proc Natl Acad Sci USA 106:5181–5186. CrossRefPubMedPubMedCentralGoogle Scholar
  25. Ho L, Miller EL, Ronan JL, Ho WQ, Jothi R, Crabtree GR (2011) esBAF facilitates pluripotency by conditioning the genome for LIF/STAT3 signalling and by regulating polycomb function. Nat Cell Biol 13:903–913. CrossRefPubMedPubMedCentralGoogle Scholar
  26. Hota SK, Bruneau BG (2016) ATP-dependent chromatin remodeling during mammalian development. Development 143:2882–2897. CrossRefPubMedPubMedCentralGoogle Scholar
  27. Johnson MH, Ziomek CA (1981) The foundation of two distinct cell lineages within the mouse morula. Cell 24:71–80CrossRefPubMedGoogle Scholar
  28. Kadoch C, Crabtree GR (2015) Mammalian SWI/SNF chromatin remodeling complexes and cancer: Mechanistic insights gained from human genomics. Sci Adv 1:e1500447. CrossRefPubMedPubMedCentralGoogle Scholar
  29. Kaji K, Nichols J, Hendrich B (2007) Mbd3, a component of the NuRD co-repressor complex, is required for development of pluripotent cells. Development 134:1123–1132. CrossRefPubMedGoogle Scholar
  30. Kidder BL, Palmer S, Knott JG (2009) SWI/SNF-Brg1 regulates self-renewal and occupies core pluripotency-related genes in embryonic stem cells. Stem Cells 27:317–328. CrossRefPubMedGoogle Scholar
  31. Kim J, Huh SO, Choi H et al (2001) Srg3, a mouse homolog of yeast SWI3, is essential for early embryogenesis and involved in brain development. Mol Cell Biol 21:7787–7795. doi:papers://04C73E32-973C-4954-A27A-47DF745B4CBA/Paper/p819Google Scholar
  32. Kim JY, Kwak PB, Weitz CJ (2014) Specificity in circadian clock feedback from targeted reconstitution of the NuRD corepressor. Mol Cell 56:738–748. CrossRefPubMedGoogle Scholar
  33. Klochendler-Yeivin A, Fiette L, Barra J, Muchardt C, Babinet C, Yaniv M (2000) The murine SNF5/INI1 chromatin remodeling factor is essential for embryonic development and tumor suppression. EMBO Rep 1:500–506CrossRefPubMedPubMedCentralGoogle Scholar
  34. Kunath T, Strumpf D, Rossant J (2004) Early trophoblast determination and stem cell maintenance in the mouse—a review. Placenta 25(Suppl A):S32–S38CrossRefPubMedGoogle Scholar
  35. Lazzaro MA, Picketts DJ (2001) Cloning and characterization of the murine Imitation Switch (ISWI) genes: differential expression patterns suggest distinct developmental roles for Snf2h and Snf2l. J Neurochem 77:1145–1156CrossRefPubMedGoogle Scholar
  36. Le Guezennec X, Vermeulen M, Brinkman AB, Hoeijmakers WA, Cohen A, Lasonder E, Stunnenberg HG (2006) MBD2/NuRD and MBD3/NuRD, two distinct complexes with different biochemical and functional properties. Mol Cell Biol 26:843–851CrossRefPubMedPubMedCentralGoogle Scholar
  37. Lee HS, Lee SA, Hur SK, Seo JW, Kwon J (2014) Stabilization and targeting of INO80 to replication forks by BAP1 during normal DNA synthesis. Nat Commun 5:5128. CrossRefPubMedGoogle Scholar
  38. Maro B, Johnson MH, Pickering SJ, Louvard D (1985) Changes in the distribution of membranous organelles during mouse early development. J Embryol Exp Morphol 90:287–309PubMedGoogle Scholar
  39. McDonel P, Costello I, Hendrich B (2009) Keeping things quiet: roles of NuRD and Sin3 co-repressor complexes during mammalian development. Int J Biochem Cell Biol 41:108–116. CrossRefPubMedGoogle Scholar
  40. Morris SA, Baek S, Sung MH et al (2014) Overlapping chromatin-remodeling systems collaborate genome wide at dynamic chromatin transitions. Nat Struct Mol Biol 21:73–81. CrossRefPubMedGoogle Scholar
  41. Nimmo RA, May GE, Enver T (2015) Primed and ready: understanding lineage commitment through single cell analysis. Trends Cell Biol 25:459–467. CrossRefPubMedGoogle Scholar
  42. O’Shaughnessy A, Hendrich B (2013) CHD4 in the DNA-damage response and cell cycle progression: not so NuRDy now. Biochem Soc Trans 41:777–782. CrossRefPubMedPubMedCentralGoogle Scholar
  43. O’Shaughnessy-Kirwan A, Signolet J, Costello I, Gharbi S, Hendrich B (2015) Constraint of gene expression by the chromatin remodelling protein CHD4 facilitates lineage specification. Development 142:2586–2597. CrossRefPubMedPubMedCentralGoogle Scholar
  44. Panamarova M, Cox A, Wicher KB et al (2016) The BAF chromatin remodelling complex is an epigenetic regulator of lineage specification in the early mouse embryo. Development 143:1271–1283. CrossRefPubMedPubMedCentralGoogle Scholar
  45. Pauken CM, Capco DG (2000) The expression and stage-specific localization of protein kinase C isotypes during mouse preimplantation development. Dev Biol 223:411–421. CrossRefPubMedGoogle Scholar
  46. Piotrowska-Nitsche K, Perea-Gomez A, Haraguchi S, Zernicka-Goetz M (2005) Four-cell stage mouse blastomeres have different developmental properties. Development 132:479–490. CrossRefPubMedGoogle Scholar
  47. Plusa B, Frankenberg S, Chalmers A et al (2005) Downregulation of Par3 and aPKC function directs cells towards the ICM in the preimplantation mouse embryo. J Cell Sci 118:505–515. CrossRefPubMedGoogle Scholar
  48. Plusa B, Piliszek A, Frankenberg S, Artus J, Hadjantonakis AK (2008) Distinct sequential cell behaviours direct primitive endoderm formation in the mouse blastocyst. Development 135:3081–3091. CrossRefPubMedPubMedCentralGoogle Scholar
  49. Qiu Z, Elsayed Z, Peterkin V, Alkatib S, Bennett D, Landry JW (2016) Ino80 is essential for proximal-distal axis asymmetry in part by regulating Bmp4 expression. BMC Biol 14:18. CrossRefPubMedPubMedCentralGoogle Scholar
  50. Ralston A, Rossant J (2008) Cdx2 acts downstream of cell polarization to cell-autonomously promote trophectoderm fate in the early mouse embryo. Dev Biol 313:614–629. CrossRefPubMedGoogle Scholar
  51. Reeve WJ, Kelly FP (1983) Nuclear position in the cells of the mouse early embryo. J Embryol Exp Morphol 75:117–139PubMedGoogle Scholar
  52. Reynolds N, O’Shaughnessy A, Hendrich B (2013) Transcriptional repressors: multifaceted regulators of gene expression. Development 140:505–512. CrossRefPubMedGoogle Scholar
  53. Rossant J, Tam PP (2009) Blastocyst lineage formation, early embryonic asymmetries and axis patterning in the mouse. Development 136:701–713. CrossRefPubMedGoogle Scholar
  54. Rossi A, Kontarakis Z, Gerri C, Nolte H, Holper S, Kruger M, Stainier DY (2015) Genetic compensation induced by deleterious mutations but not gene knockdowns. Nature 524:230–233. CrossRefPubMedGoogle Scholar
  55. Shimbo T, Du Y, Grimm SA et al (2013) MBD3 localizes at promoters, gene bodies and enhancers of active genes. PLoS Genet 9:e1004028. CrossRefPubMedPubMedCentralGoogle Scholar
  56. Stopka T, Skoultchi AI (2003) The ISWI ATPase Snf2h is required for early mouse development. Proc Natl Acad Sci USA 100:14097–14102CrossRefPubMedPubMedCentralGoogle Scholar
  57. Tong JK, Hassig CA, Schnitzler GR, Kingston RE, Schreiber SL (1998) Chromatin deacetylation by an ATP-dependent nucleosome remodelling complex. Nature 395:917–921CrossRefPubMedGoogle Scholar
  58. Torres-Padilla ME, Zernicka-Goetz M (2006) Role of TIF1alpha as a modulator of embryonic transcription in the mouse zygote. J Cell Biol 174:329–338. CrossRefPubMedPubMedCentralGoogle Scholar
  59. Torres-Padilla ME, Parfitt DE, Kouzarides T, Zernicka-Goetz M (2007) Histone arginine methylation regulates pluripotency in the early mouse embryo. Nature 445:214–218. CrossRefPubMedPubMedCentralGoogle Scholar
  60. Vinot S, Le T, Ohno S, Pawson T, Maro B, Louvet-Vallee S (2005) Asymmetric distribution of PAR proteins in the mouse embryo begins at the 8-cell stage during compaction. Dev Biol 282:307–319. CrossRefPubMedGoogle Scholar
  61. Wade PA, Jones PL, Vermaak D, Wolffe AP (1998) A multiple subunit Mi-2 histone deacetylase from Xenopus laevis cofractionates with an associated Snf2 superfamily ATPase. Curr Biol 8:843–846CrossRefPubMedGoogle Scholar
  62. Wang K, Sengupta S, Magnani L, Wilson CA, Henry RW, Knott JG (2010) Brg1 is required for Cdx2-mediated repression of Oct4 expression in mouse blastocysts. PLoS One 5:e10622. CrossRefPubMedPubMedCentralGoogle Scholar
  63. Wang L, Du Y, Ward JM et al (2014) INO80 facilitates pluripotency gene activation in embryonic stem cell self-renewal, reprogramming, and blastocyst development. Cell Stem Cell 14:575–591. CrossRefPubMedPubMedCentralGoogle Scholar
  64. Xue Y, Wong J, Moreno GT, Young MK, Côté J, Wang W (1998) NURD, a novel complex with both ATP-dependent chromatin-remodeling and histone deacetylase activities. Mol Cell 2:851–861CrossRefPubMedGoogle Scholar
  65. Zhang Y, LeRoy G, Seelig H-P, Lane WS, Reinberg D (1998) The dermatomyositis-specific autoantigen Mi2 is a component of a complex containing histone deacetylase and nucleosome remodeling activites. Cell 95:279–289CrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  1. 1.Faculty of Biology, Medicine and HealthUniversity of ManchesterManchesterUK
  2. 2.Wellcome Trust – Medical Research Council Stem Cell InstituteUniversity of CambridgeCambridgeUK
  3. 3.Department of BiochemistryUniversity of CambridgeCambridgeUK

Personalised recommendations