Regulated Automata and Computation

  • Alexander Meduna
  • Ondřej Soukup


Just like there exist regulated grammars, which formalize regulated computation (see Chap.  3), there also exist their automata-based counterparts for this purpose. Basically, in a very natural and simple way, these automata regulate the selection of rules according to which their sequences of moves are made. These regulated automata represent the principle subject of the present chapter, which covers their most essential types.


  1. [ABB97]
    J. Autebert, J. Berstel, L. Boasson, (eds.), Context-Free Languages and Pushdown Automata, in Handbook of Formal Languages, chapter 3 (Springer, Berlin, 1997), pp. 111–174Google Scholar
  2. [DP89]
    J. Dassow, G. Păun, Regulated Rewriting in Formal Language Theory (Springer, Berlin, 1989)CrossRefMATHGoogle Scholar
  3. [FR68]
    P.C. Fischer, A.L. Rosenberg, Multitape one-way nonwriting automata. J. Comput. Syst. Sci. 2, 38–101 (1968)MathSciNetMATHGoogle Scholar
  4. [Har78]
    M.A. Harrison, Introduction to Formal Language Theory (Addison-Wesley, Boston, 1978)MATHGoogle Scholar
  5. [Iba70]
    O.H. Ibarra, Simple matrix languages. Inf. Control 17, 359–394 (1970)MathSciNetCrossRefMATHGoogle Scholar
  6. [RW73]
    R.D. Rosebrugh, D. Wood, A characterization theorem for n-parallel right linear languages. J. Comput. Syst. Sci. 7, 579–582 (1973)MathSciNetCrossRefMATHGoogle Scholar
  7. [RW75]
    R.D. Rosebrugh, D. Wood, Restricted parallelism and right linear grammars. Utilitas Mathematica 7, 151–186 (1975)MathSciNetMATHGoogle Scholar
  8. [Sal73]
    A. Salomaa, Formal Languages (Academic Press, London, 1973)MATHGoogle Scholar
  9. [Sir69]
    R. Siromoney, Studies in the mathematical theory of grammars and its applications, PhD thesis, University of Madras, Madras, India, 1969Google Scholar
  10. [Sir71]
    R. Siromoney, Finite-turn checking automata. J. Comput. Syst. Sci. 5, 549–559 (1971)MathSciNetCrossRefMATHGoogle Scholar
  11. [Woo73]
    D. Wood, Properties of n-parallel finite state languages. Technical report, McMaster University, 1973MATHGoogle Scholar
  12. [Woo75]
    D. Wood, m-parallel n-right linear simple matrix languages. Utilitas Mathematica 8, 3–28 (1975)Google Scholar
  13. [Woo87]
    D. Wood, Theory of Computation: A Primer (Addison-Wesley, Boston, 1987)Google Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Alexander Meduna
    • 1
  • Ondřej Soukup
    • 2
  1. 1.Department of Computer ScienceBrno University of TechnologyBrnoCzech Republic
  2. 2.Department of Information TechnologyBrno University of TechnologyBrnoCzech Republic

Personalised recommendations