Regulated Grammars and Computation

  • Alexander Meduna
  • Ondřej Soukup


In practice, computation is almost always regulated by some additional conditions and restrictions placed upon the way it is performed under given circumstances. To investigate computation regulated in this way as precisely as possible, language theory has formalized it by a variety of regulated grammars. In essence, all these grammars are based upon some restrictions placed upon their derivations and, thereby, properly express computational regulation. This chapter covers major types of these grammars.


  1. [Cho59]
    N. Chomsky, On certain formal properties of grammars. Inf. Control 2, 137–167 (1959)MathSciNetCrossRefMATHGoogle Scholar
  2. [DP89]
    J. Dassow, G. Păun, Regulated Rewriting in Formal Language Theory (Springer, Berlin, 1989)CrossRefMATHGoogle Scholar
  3. [Gef91]
    V. Geffert, Normal forms for phrase-structure grammars. Theor. Inf. Appl. 25(5), 473–496 (1991)MathSciNetCrossRefMATHGoogle Scholar
  4. [Gre65]
    S.A. Greibach, A new normal-form theorem for context-free phrase structure grammars. J. ACM 12(1), 42–52 (1965)MathSciNetCrossRefMATHGoogle Scholar
  5. [Kas70]
    T. Kasai, A hierarchy between context-free and context-sensitive languages. J. Comput. Syst. Sci. 4, 492–508 (1970)MathSciNetCrossRefMATHGoogle Scholar
  6. [Kur64]
    S.Y. Kuroda, Classes of languages and linear-bounded automata. Inf. Control 7(2), 207–223 (1964)MathSciNetCrossRefMATHGoogle Scholar
  7. [Mas06]
    T. Masopust, An improvement of the descriptional complexity of grammars regulated by context conditions, in 2nd Doctoral Workshop on Mathematical and Engineering Methods in Computer Science (Faculty of Information Technology BUT, Brno, CZ, 2006), pp. 105–112Google Scholar
  8. [Med03c]
    A. Meduna, Simultaneously one-turn two-pushdown automata. Int. J. Comput. Math. 2003(80), 679–687 (2003)MathSciNetCrossRefMATHGoogle Scholar
  9. [MVMP04]
    C. Martín-Vide, V. Mitrana, G. Păun (eds.), Formal Languages and Applications, chapter 13 (Springer, Berlin, 2004), pp. 249–274Google Scholar
  10. [MZ14]
    A. Meduna, P. Zemek, Regulated Grammars and Automata (Springer US, New York, 2014)CrossRefMATHGoogle Scholar
  11. [Oku09]
    F. Okubo, A note on the descriptional complexity of semi-conditional grammars. Inf. Process. Lett. 110(1), 36–40 (2009)MathSciNetCrossRefMATHGoogle Scholar
  12. [Pen74]
    M. Penttonen, One-sided and two-sided context in formal grammars. Inf. Control 25(4), 371–392 (1974)MathSciNetCrossRefMATHGoogle Scholar
  13. [Pen75]
    M. Penttonen, ET0L-grammars and N-grammars. Inf. Process. Lett. 4(1), 11–13 (1975)MathSciNetCrossRefMATHGoogle Scholar
  14. [P8̆5]
    G. Păun, A variant of random context grammars: semi-conditional grammars. Theor. Comput. Sci. 41(1), 1–17 (1985)CrossRefMATHGoogle Scholar
  15. [RS80]
    G. Rozenberg, A. Salomaa, Mathematical Theory of L Systems (Academic Press, Orlando, 1980)MATHGoogle Scholar
  16. [RS97b]
    G. Rozenberg, A. Salomaa (eds.), Handbook of Formal Languages, Vol. 2: Linear Modeling: Background and Application (Springer, New York, 1997)Google Scholar
  17. [Sal73]
    A. Salomaa, Formal Languages (Academic Press, London, 1973)MATHGoogle Scholar
  18. [Vas05]
    G. Vaszil, On the descriptional complexity of some rewriting mechanisms regulated by context conditions. Theor. Comput. Sci. 330(2), 361–373 (2005)MathSciNetCrossRefMATHGoogle Scholar
  19. [Zet10]
    G. Zetzsche, On erasing productions in random context grammars, in ICALP’10: Proceedings of the 37th International Colloquium on Automata, Languages and Programming (Springer, 2010), pp. 175–186Google Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Alexander Meduna
    • 1
  • Ondřej Soukup
    • 2
  1. 1.Department of Computer ScienceBrno University of TechnologyBrnoCzech Republic
  2. 2.Department of Information TechnologyBrno University of TechnologyBrnoCzech Republic

Personalised recommendations