Advertisement

Anonymity-Preserving Methods for Client-Side Filtering in Position-Based Collaboration Approaches

  • Henrik Detjen
  • Stefan HoffmannEmail author
  • Gerd Bumiller
  • Stefan Geisler
  • Marc Jansen
  • Markus Markard
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10397)

Abstract

This paper describes and evaluates three methods for anonymizing location data in the context of an example of practical relevance. These anonymization methods are designed for a smartphone-based system to integrate voluntary helpers into professional rescue processes, especially in case of time-critical medical emergencies, but can also be used for other collaboration approaches. We analyze the methods with a focus on anonymity of the operation site, precision and filtering.

Keywords

Localization Anonymity Privacy Mobile service 

References

  1. 1.
    Detjen, H., Hoffmann, S., Rösner, L., Winter, S., Geisler, S., Krämer, N., Bumiller, G.: Integrating volunteers into rescue processes: analysis of user requirements and mobile app conception. Int. J. Inf. Syst. Crisis Response Manag. 7, 1–18 (2015)CrossRefGoogle Scholar
  2. 2.
    Sweeney, L.: K-anonymity: a model for protecting privacy. Int. J. Uncertainty Fuzziness Knowl. Based Syst. 10, 557–570 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Machanavajjhala, A., Kifer, D., Gehrke, J., Venkitasubramaniam, M.: L-diversity: privacy beyond K-anonymity. ACM Trans. Knowl. Discov. Data 1, 3 (2007)CrossRefGoogle Scholar
  4. 4.
    Li, N., Li, T., Venkatasubramanian, S.: t-Closeness: privacy beyond k-anonymity and l-diversity. In: 2007 IEEE 23rd International Conference on Data Engineering (2007)Google Scholar
  5. 5.
    Dwork, C.: Differential privacy. In: Bugliesi, M., Preneel, B., Sassone, V., Wegener, I. (eds.) ICALP 2006. LNCS, vol. 4052, pp. 1–12. Springer, Heidelberg (2006). doi: 10.1007/11787006_1 CrossRefGoogle Scholar
  6. 6.
    Vagts, H.-H.: Privatheit und Datenschutz in der intelligenten Überwachung. KIT Scientific Publishing, Karlsruhe (2013)Google Scholar
  7. 7.
    Gruteser, M., Grunwald, D.: Anonymous Usage of Location-Based Services Through Spatial and Temporal Cloaking. In: Proceedings of the 1st International Conference on Mobile Systems, Applications and Services, San Francisco, California (2003)Google Scholar
  8. 8.
    Masoumzadeh, A., Joshi, J., Karimi, H.A.: LBS (K, T)-anonymity: a spatio-temporal approach to anonymity for location-based service users. In: Proceedings of the 17th ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems, Seattle, Washington (2009)Google Scholar
  9. 9.
    European Commission, “europa.eu”. http://ec.europa.eu/eurostat/de/web/population-and-housing-census/census-data/2011-census. Accessed May 10 2016
  10. 10.
    Kim, J.: A method for limiting disclosure in microdata based on random noise and transformation. In: Proceedings of the Section on Survey Research Methods of the American (1986)Google Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Henrik Detjen
    • 1
  • Stefan Hoffmann
    • 1
    Email author
  • Gerd Bumiller
    • 1
  • Stefan Geisler
    • 1
  • Marc Jansen
    • 1
  • Markus Markard
    • 1
  1. 1.Computer Science InstituteUniversity of Applied Sciences Ruhr WestBottropGermany

Personalised recommendations