Reduced Basis Method Applied to a Convective Instability Problem

  • Henar Herrero
  • Yvon Maday
  • Francisco Pla
Conference paper
Part of the Mathematics in Industry book series (MATHINDUSTRY, volume 26)


Numerical reduced basis methods are instrumental to solve parameter dependent partial differential equations problems in case of many queries. Bifurcation and instability problems have these characteristics as different solutions emerge by varying a bifurcation parameter. Rayleigh-Bénard convection is an instability problem with multiple steady solutions and bifurcations by varying the Rayleigh number. In this paper the eigenvalue problem of the corresponding linear stability analysis has been solved with this method. The resulting matrices are small, the eigenvalues are easily calculated and the bifurcation points are correctly captured. Nine branches of stable and unstable solutions are obtained with this method in an interval of values of the Rayleigh number. Different basis sets are considered in each branch. The reduced basis method permits one to obtain the bifurcation diagrams with much lower computational cost.



This work was partially supported by the Research Grants MINECO (Spanish Government) MTM2015-68818-R, which include RDEF funds.


  1. 1.
    Almroth, B.O., Stern, P., Brogan, F.A.: Automatic choice of global shape functions in structural analysis. AIAA J. 16, 525–528 (1978)CrossRefGoogle Scholar
  2. 2.
    Barrett, A., Reddien, G.: On the reduced basis method. Z. Angew. Math. Mech. 75(7), 543–549 (1995)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Bénard, H.: Les tourbillons cèllulaires dans une nappe liquide. Rev. Gen. Sci. Pures Appl. Bull. Assoc. 11, 1261–1271 (1900)Google Scholar
  4. 4.
    Bernardi, C., Maday, Y.: Approximations spectrales de problèmes aux limites elliptiques. Springer, Berlin (1991)zbMATHGoogle Scholar
  5. 5.
    Canuto, C., Hussaine, M.Y., Quarteroni, A., Zang, T.A.: Spectral Methods in Fluid Dynamics. Springer, Berlin (1988)CrossRefzbMATHGoogle Scholar
  6. 6.
    Chandrasekhar, S.: Hydrodynamic and Hydromagnetic Stability. Dover, New York (1982)zbMATHGoogle Scholar
  7. 7.
    Herrero, H., Maday, Y., Pla, F.: RB (Reduced Basis) applied to RB (Rayleigh-Bénard). Comput. Methods Appl. Mech. Eng. 261–262, 132–141 (2013)CrossRefzbMATHGoogle Scholar
  8. 8.
    Noor, A.K., Peters, J.M.: Bifurcation and post-buckling analysis of laminated composite plates via reduced basis techniques. Comput. Methods Appl. Mech. Eng. 29, 271–295 (1981)CrossRefzbMATHGoogle Scholar
  9. 9.
    Noor, A.K., Peters, J.M.: Multiple-parameter reduced basis technique for bifurcation and post-buckling analysis of composite plates. Int. J. Numer. Methods Eng. 19, 1783–1803 (1983)CrossRefzbMATHGoogle Scholar
  10. 10.
    Noor, A.K., Balch, C.D., Shibut, M.A.: Reduction methods for non-linear steadystate thermal analysis. Int. J. Numer. Methods Eng. 20, 1323–1348 (1984)CrossRefzbMATHGoogle Scholar
  11. 11.
    Rozza, G., Huynh, D.B.P., Patera, A.T.: Reduced basis approximation and a posteriori error estimation for affinely parametrized elliptic coercive partial differential equations. Arch. Comput. Methods Eng. 15(3), 229–275 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Pla, F., Mancho, A.M., Herrero, H.: Bifurcation phenomena in a convection problem with temperature dependent viscosity at low aspect ratio. Physica D 238(5), 572–580 (2009)CrossRefzbMATHGoogle Scholar
  13. 13.
    Pla, F., Herrero, H., Lafitte, O.: Theoretical and numerical study of a thermal convection problem with temperature-dependent viscosity in an infinite layer. Physica D 239(13), 1108–1119 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Porsching, T.A., Lin Lee, M.Y.: The reduced-basis method for initial value problems. SIAM J. Numer. Anal. 24, 1277–1287 (1987)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Prud’homme, C., Rovas, D., Veroy, K., Maday, Y., Patera, A.T., Turinici, G.: Reliable real-time solution of parametrized partial differential equations: reduced-basis output bounds methods. J. Fluids Eng. 124(1), 70–80 (2002)CrossRefGoogle Scholar
  16. 16.
    Rayleigh, L.: On convection currents in a horizontal layer of fluid when the higher temperature is on the under side. Philos. Mag. 32, 529–546 (1916)CrossRefzbMATHGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2017

Authors and Affiliations

  1. 1.Dpto. MatemáticasU. Castilla-La ManchaCiudad RealSpain
  2. 2.Laboratoire Jacques-Louis LionsSorbone Universités, UPMC Univ Paris 06, UMR 7598ParisFrance
  3. 3.Institut Universitaire de FranceParisFrance
  4. 4.Division of Applied MathsBrown UniversityProvidenceUSA

Personalised recommendations