A Self-adapting LPS Solver for Laminar and Turbulent Fluids in Industry and Hydrodynamic Flows

  • Tomás Chacón Rebollo
  • Enrique Delgado Ávila
  • Macarena Gómez Mármol
  • Samuele Rubino
Conference paper
Part of the Mathematics in Industry book series (MATHINDUSTRY, volume 26)

Abstract

In this work we address the solution of the Navier–Stokes equations (NSE) in turbulent regime. On one side we focus is on the high-order term-by-term stabilization method that has one level, in the sense that it is defined on a single mesh, and in which the projection-stabilized structure of standard LPS methods is replaced by an interpolation-stabilized structure. The interest of LPS methods is that it ensures a self-adapting high accuracy in laminar regions of a turbulent flow, that turns to be of overall optimal high accuracy if the flow is fully laminar. On another side we present a reduced basis Smargorinsky turbulence model, based upon an empirical interpolation of the eddy viscosity term. This method yields dramatical improvements of the computing time, over 1000, for benchmark flows.

Notes

Acknowledgements

The research of Tomás Chacón Rebollo and Macarena Gómez Mármol has been partially supported by the Spanish Government Project MTM2015-64577-C2-1-R. The research of Samuele Rubino has been partially supported by the Junta de Andalucía Excellence Project P12-FQM-454. Samuele Rubino would also gratefully acknowledge the financial support received from ERC Project H2020-EU.1.1.-639227 during his postdoctoral research involved in this article.

References

  1. 1.
    Ahmed, N., Chacón Rebollo, T., John, V., Rubino, S.: A review of variational multiscale methods for the simulation of turbulent incompressible flows. Arch. Comput. Methods Eng. 24, 115–164 (2015). doi:10.1007/s11831-015-9161-0MathSciNetCrossRefMATHGoogle Scholar
  2. 2.
    Ahmed, N., Chacón Rebollo, T., John, V., Rubino, S.: Analysis of a full space-time discretization of the Navier-Stokes equations by a local projection stabilization method. Preprint 2166, WIAS, Berlin. IMA J. Numer. Anal. 37, 1437–1467 (2016). doi:10.1093/ imanum/ drw048Google Scholar
  3. 3.
    Braack, M., Burman, E.: Local projection stabilization for the Oseen problem and its interpretation as a variational multiscale method. SIAM J. Numer. Anal. 43(6), 2544–2566 (2006)MathSciNetCrossRefMATHGoogle Scholar
  4. 4.
    Chacón Rebollo, T.: A term by term stabilization algorithm for finite element solution of incompressible flow problems. Numer. Math. 79(2), 283–319 (1998)MathSciNetCrossRefMATHGoogle Scholar
  5. 5.
    Chacón Rebollo, T., Gómez Mármol, M., Girault, V., Sánchez Muñoz, I.: A high order term-by-term stabilization solver for incompressible flow problems. IMA J. Numer. Anal. 33(3), 974–1007 (2013)MathSciNetCrossRefMATHGoogle Scholar
  6. 6.
    Chacón Rebollo, T., Gómez Mármol, M., Restelli, M.: Numerical analysis of penalty stabilized finite element discretizations of evolution Navier-Stokes equation. J. Sci. Comput. 61(1), 1–28 (2014)MathSciNetCrossRefMATHGoogle Scholar
  7. 7.
    Gravemeier, V.: Scale-separating operators for variational multiscale large eddy simulation of turbulent flows. J. Comput. Phys. 212(2), 400–435 (2006)MathSciNetCrossRefMATHGoogle Scholar
  8. 8.
    Gravemeier, V., Wall, W.A., Ramm, E.: Large eddy simulation of turbulent incompressible flows by a three-level finite element method. Int. J. Numer. Methods Fluids 48(10), 1067–1099 (2005)MathSciNetCrossRefMATHGoogle Scholar
  9. 9.
    Grelp, M.A., Maday, Y., Nguyen, N.C., Patera, A.T.: Efficient reduced-basis treatment of nonaffine and nonlinear partial differential equations. ESAIM: Math. Model. Numer. Anal. 41(3), 575–605 (2007)MathSciNetCrossRefMATHGoogle Scholar
  10. 10.
    John, V., Kindl, A.: Numerical studies of finite element variational multiscale methods for turbulent flow simulations. Comput. Methods Appl. Mech. Eng. 199(13–16), 841–852 (2010)MathSciNetCrossRefMATHGoogle Scholar
  11. 11.
    Knobloch, P., Lube, G.: Local projection stabilization for advection-diffusion-reaction problems: one-level vs. two-level approach. Appl. Numer. Math. 59(12), 2891–2907 (2009)Google Scholar
  12. 12.
    Moser, R., Kim, J., Mansour, N.N.: Direct numerical simulation of turbulent channel flow up to Re τ = 590. Phys. Fluids 11(4), 943–945 (1999)Google Scholar
  13. 13.
    Scott, R.L., Zhang, S.: Finite element interpolation of non-smooth functions satisfying boundary conditions. Math. Comput. 54(190), 483–493 (1990)CrossRefMATHGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2017

Authors and Affiliations

  • Tomás Chacón Rebollo
    • 1
  • Enrique Delgado Ávila
    • 1
  • Macarena Gómez Mármol
    • 2
  • Samuele Rubino
    • 3
  1. 1.Departamento EDAN & IMUSUniversidad de SevillaSevillaSpain
  2. 2.Departamento EDANUniversidad de SevillaSevillaSpain
  3. 3.Departamento de Análisis Matemático & IMUSUniversidad de SevillaSevillaSpain

Personalised recommendations