Numerical Simulation of a Li-Ion Cell Using a Thermoelectrochemical Model Including Degradation

  • David Aller Giráldez
  • M. Teresa Cao-Rial
  • Pedro Fontán Muiños
  • Jerónimo Rodríguez
Conference paper
Part of the Mathematics in Industry book series (MATHINDUSTRY, volume 26)


A thermoelectrochemical model for the simulation of Li-ion cells is presented and numerically solved herein. The model, based on Newman’s (Newman and Thomas-Alyea, Electrochemical Systems, Wiley, New York, 2004) concentrated solution theory, covers electrochemical, thermal and aging effects. The degradation mechanism considered is the growth, due to a solvent decomposition reaction, of the Solid Electrolyte Interface layer (SEI) in the graphite electrode. Model homogenization is phenomenological but detailed particle-scale models are considered for the diffusion of species within active particles and SEI. The one dimensional thermal model incorporates reversible, irreversible, and ohmic heat generation, as well as the temperature dependence of the various transport, kinetic and mass transfer parameters. The governing equations are semi-discretized in space using finite elements (with FEniCS software package (Alnæs et al., Arch Numer Softw 3(100), 2015)) and integrated in time with implicit Euler method. For each time step, this leads to a set of nonlinear equations that is solved fully coupled through Newton’s iterations. This implementation is used to numerically simulate several charge-discharge cycles of a cell at 1C regime with an execution time around 50 times faster than real-time in a standard PC.



This work was funded by Xunta de Galicia, ITMATI and Repsol through the Joined Research Unit IN853A 2014/03.


  1. 1.
    Alnæs, M.S., et al.: The FEniCS Project Version 1.5. Arch. Numer. Softw. 3(100) (2015)Google Scholar
  2. 2.
    Fang, W., Kwon, O.J., Wang, C.Y.: Electrochemical-thermal modeling of automotive Li-ion batteries and experimental validation using a three-electrode cell. Int. J. Energy Res. 34(2), 107–115 (2010)CrossRefGoogle Scholar
  3. 3.
    Gu, W.B., Wang, C.Y.: Thermal-electrochemical modeling of battery systems. J. Electrochem. Soc. 147(8), 2910–2922 (2000)CrossRefGoogle Scholar
  4. 4.
    Mazumder, S., Lu, J.: Faster-than-real-time simulation of lithium ion batteries with full spatial and temporal resolution. Int. J. Electrochem. 2013, 10 pp. (2013)Google Scholar
  5. 5.
    Newman, J., Thomas-Alyea, K.E.: Electrochemical Systems. Wiley, New York (2004)Google Scholar
  6. 6.
    Ning, G., Popov, B.N.: Cycle life modeling of lithium–ion batteries. J. Electrochem. Soc. 151(10), A1584–A1591 (2004)CrossRefGoogle Scholar
  7. 7.
    Ploehn, H.J., Ramadass, P., White, R.E.: Solvent diffusion model for aging of lithium–ion battery cells. J. Electrochem. Soc. 151(3), A456–A462 (2004)CrossRefGoogle Scholar
  8. 8.
    Safari, M., Morcrette, M., Teyssot, A., Delacourt, C.: Multimodal physics-based aging model for life prediction of Li–ion batteries. J. Electrochem. Soc. 156(3), A145–A153 (2009)CrossRefGoogle Scholar
  9. 9.
    Srinivasan, V., Wang, C.Y.: Analysis of electrochemical and thermal behavior of Li-ion cells. J. Electrochem. Soc. 150(1), A98–A106 (2003)CrossRefGoogle Scholar
  10. 10.
    Vetter, J., Novák, P., Wagner, M.R., Veit, C., Möller, K.-C., Besenhard, J.O., Winter, M., Wohlfahrt-Mehrens, M., Vogler, C., Hammouche, A.: Ageing mechanisms in lithium-ion batteries. J. Power Sources 147(1), 269–281 (2005)CrossRefGoogle Scholar
  11. 11.
    Wang, C.Y., Gu, W.B., Liaw, B.Y.: Micro-macroscopic coupled modeling of batteries and fuel cells I. Model development. J. Electrochem. Soc. 145(10), 3407–3417 (1998)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2017

Authors and Affiliations

  • David Aller Giráldez
    • 1
  • M. Teresa Cao-Rial
    • 2
    • 3
  • Pedro Fontán Muiños
    • 2
  • Jerónimo Rodríguez
    • 2
    • 4
  1. 1.Repsol Technology CenterCalle Agustín de Betancourt s/nMóstolesSpain
  2. 2.ITMATISantiago de CompostelaSpain
  3. 3.Dpto. de MatemáticasUniversidade da CoruñaA CoruñaSpain
  4. 4.Dpto. de Matemática AplicadaUniversidade de Santiago de CompostelaSantiago de Compostela, A CoruñaSpain

Personalised recommendations