Minisymposium: Spacetime Models of Gravity in Space Geolocation and Acoustics

  • Jose M. Gambi
  • Michael M. Tung
  • Emilio Defez
  • Manuel Carretero
Conference paper
Part of the Mathematics in Industry book series (MATHINDUSTRY, volume 26)


The geometrization of gravity has become one of the cornerstones of modern science having an impact on the industrial progress connected to many activities of daily life. In fact, in the last decades substantial research has been invested into post-Newtonian corrections for high-precision space geodesy and navigation [1–3, 12], as well as into the design of analogue models of gravity by making use of advanced optical and acoustic metamaterials (see e.g. [4, 5, 13]). Other present industrial procedures requiring very accurate timing show the need of innovative development of computationally efficient space-time models for use in space. In particular, these models become important in geolocation of passive radiotransmitters in space and to improve active space debris removal [8, 14, 15]. Moreover, acoustic metamaterials—artificially produced materials with exceptional properties not found in nature—provide the engineer with tools to fabricate acoustic devices with highly unusual features.


  1. 1.
    Ashby, N.: Relativity in the global positioning system. Living Rev. Relativ. 6(1), 1–42 (2003)CrossRefzbMATHGoogle Scholar
  2. 2.
    Bahder, T.B.: Navigation in curved space-time. Am. J. Phys. 69, 315–321 (2001)CrossRefGoogle Scholar
  3. 3.
    Bahder, T.B.: Clock Synchronization and Navigation in the Vicinity of the Earth. Nova Science Publishers Inc., New York (2009)Google Scholar
  4. 4.
    Chen, H.Y., Chan, C.T.: Acoustic cloaking and transformation acoustics. J. Phys. D 43, 113001 (2010)CrossRefGoogle Scholar
  5. 5.
    Cummer, S.A.: Transformation acoustics. In: Craster, R.V., Guenneau, S. (eds.) Acoustic Metamaterials. Springer Series in Materials Science, vol. 166, pp. 197–218. Springer, Berlin (2013)Google Scholar
  6. 6.
    Gambi, J.M., Garcia del Pino, M.L.: A satellite-to-satellite laser tracking solution within the post-Newtonian model of the earth outer space. In: Progress in Industrial Mathematics at ECMI 2012. Mathematics in Industry, vol. 19, pp. 347–352. Springer, Berlin (2014)Google Scholar
  7. 7.
    Gambi, J.M., Garcia del Pino, M.L.: Post-Newtonian equations of motion for inertial guided space APT systems. WSEAS Trans. Math. 14, 256–264 (2015)Google Scholar
  8. 8.
    Gambi, J.M., Rodriguez-Teijeiro, M.C., Garcia del Pino, M.L., Salas, M.: Shapiro time-delay within the geolocation problem by TDOA. IEEE Trans. Aerosp. Electron. Syst. 47(3), 1948–1962 (2011)Google Scholar
  9. 9.
    Gambi, J.M., Rodriguez-Teijeiro, M.C., Garcia del Pino, M.L.: The post-Newtonian geolocation problem by TDOA. In: Progress in Industrial Mathematics at ECMI 2010. Mathematics in Industry, vol. 17, pp. 489–495. Springer, Berlin (2012)Google Scholar
  10. 10.
    Gambi, J.M., Clares, J., Garcia del Pino, M.L.: FDOA post-Newtonian equations for the location of passive emitters placed in the vicinity of the earth. Aerosp. Sci. Technol. 46, 137–145 (2015)Google Scholar
  11. 11.
    Gambi, J.M., Rodriguez-Teijeiro, M.C., Garcia del Pino, M.L.: Newtonian and post-Newtonian passive geolocation by TDOA. Aerosp. Sci. Technol. 51, 18–25 (2016)Google Scholar
  12. 12.
    Moritz, H., Hofmann-Wellenhof, B.: Geometry, Relativity, Geodesy. H. Wichmann Verlag GmbH, Karlsruhe (1993)Google Scholar
  13. 13.
    Norris, A.N.: Acoustic metafluids. J. Acoust. Soc. Am. 125, 839–849 (2009)CrossRefGoogle Scholar
  14. 14.
    Schmitz, M., Fasoulas, S., Utzmann, J.: Performance model for space-based laser debris sweepers. Acta Astronaut. 115, 376–386 (2015)CrossRefGoogle Scholar
  15. 15.
    Shuangyan, S., Xing, J., Hao, C.: Cleaning space debris with a space-based laser system. Chin. J. Aeronaut. 24(4), 805–811 (2014)Google Scholar
  16. 16.
    Tung, M.M.: A fundamental Lagrangian approach to transformation acoustics and spherical spacetime cloaking. Europhys. Lett. 98, 34002–34006 (2012)CrossRefGoogle Scholar
  17. 17.
    Tung, M.M.: Modelling metamaterial acoustics on spacetime manifolds. In: Jódar, L., Acedo, L., Cortés, J.C., Pedroche, F. (eds.) Modelling for Engineering and Human Behaviour 2012, pp. 235–339. Universidad Politécnica de Valencia (2012)Google Scholar
  18. 18.
    Tung, M.M., Peinado, J.: A covariant spacetime approach to transformation acoustics. In: Fontes, M., Günther, M., Marheineke, N. (eds.) Progress in Industrial Mathematics at ECMI 2012. Mathematics in Industry, vol. 19, pp. 335–340. Springer, Berlin (2014)CrossRefGoogle Scholar
  19. 19.
    Tung, M.M., Weinmüller, E.B.: Gravitational frequency shifts in transformation acoustics. Europhys. Lett. 101, 54006–54011 (2013)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2017

Authors and Affiliations

  • Jose M. Gambi
    • 1
  • Michael M. Tung
    • 2
  • Emilio Defez
    • 2
  • Manuel Carretero
    • 1
  1. 1.Gregorio Millán InstituteUniv. Carlos III de MadridMadridSpain
  2. 2.Instituto de Matemática MultidisciplinarUniv. Politècnica de ValènciaValenciaSpain

Personalised recommendations