A Discrete Cross-Diffusion Model for Image Restoration

  • Adérito Araújo
  • Silvia Barbeiro
  • Eduardo Cuesta
  • Ángel Durán
Conference paper
Part of the Mathematics in Industry book series (MATHINDUSTRY, volume 26)

Abstract

In this paper a fully discrete cross-diffusion model for image restoration is introduced. The image is represented by a two-component vector field, and the restoration process is governed by a nonlinear cross-diffusion difference system. We explore numerically the potentialities of using the nonlinear cross-diffusion approach as an image filter, in particular as a preprocessing step for image segmentation.

Notes

Acknowledgements

This work was supported by Spanish Ministerio de Economía y Competitividad under the Research Grant MTM2014-54710-P. A. Araújo and S. Barbeiro were also supported by the Centre for Mathematics of the University of Coimbra—UID/MAT/00324/2013, funded by the Portuguese Government through FCT/MCTES and co-funded by the European Regional Development Fund through the Partnership Agreement PT2020.

References

  1. 1.
    Araújo, A., Barbeiro, S., Cuesta, E., Durán, A.: Cross-diffusion systems for image processing: I. The linear case. Preprint available at http://arxiv.org/abs/1605.02923
  2. 2.
    Araújo, A., Barbeiro, S., Cuesta, E., Durán, A.: Cross-diffusion systems for image processing: II. The nonlinear case. Preprint available at http://arxiv.org/abs/1605.03721
  3. 3.
    Araújo, A., Barbeiro, S., Serranho, P.: Convergence of finite difference schemes for nonlinear complex reaction-diffusion processes. SIAM J. Numer. Anal. 53(1), 228–250 (2015)MathSciNetCrossRefMATHGoogle Scholar
  4. 4.
    Bernardes, R., Maduro, C., Serranho, P., Araújo, A., Barbeiro, S., Cunha-Vaz, J.: Improved adaptive complex diffusion despeckling filter. Opt. Express 18(23), 24048–24059 (2010)CrossRefGoogle Scholar
  5. 5.
    Chiu, S.J., Li, X.T., Nicholas, P., Toth, C.A., Izatt, C.A., Farsiu, S.: Automatic segmentation of seven retinal layers in SDOCT images congruent with expert manual segmentation. Opt. Express 18(18), 19413–19428 (2010)CrossRefGoogle Scholar
  6. 6.
    Ciulla, T., Amador, A., Zinman, B.: Diabetic retinopathy and diabetic macular edema. Diabetes Care 26(9), 2653–2664 (2003)CrossRefGoogle Scholar
  7. 7.
    Crété-Roffet, F., Dolmiere, T., Ladret, P., Nicolas, M.: The blur effect: perception and estimation with a new no-reference perceptual blur metric. In: Proceedings of SPIE on Human Vision and Electronic Imaging XII, San Jose, California, USA. 11 pp. (2007)Google Scholar
  8. 8.
    Cunha-Vaz, J., Bernardes, R.: Nonproliferative retinopathy in diabetes type 2. Initial stages and characterization of phenotypes. Prog. Retin. Eye Res. 24(3), 355–377 (2005)CrossRefGoogle Scholar
  9. 9.
    Fercher, A.F., Drexler, W., Hitzenberger, C.K., Lasser, T.: Optical coherence tomography-principles and applications. Rep. Prog. Phys. 632, 239–303 (2003)CrossRefGoogle Scholar
  10. 10.
    Gilboa, G., Sochen, N. A., Zeevi, Y. Y.: Image enhancement and denoising by complex diffusion processes. IEEE Trans. Pattern Anal. Mach. Intell. 26(8), 1020–1036 (2004)CrossRefGoogle Scholar
  11. 11.
    Lorenz, D.A., Bredies, K., Zeevi, Y.Y.: Nonlinear complex and cross diffusion. Unpublished report, University of Bremen (2006)Google Scholar
  12. 12.
    Ni, W.-M.: Diffusion, cross-diffusion and their spike-layer steady states. Not. Am. Math. Soc. 45(1), 9–18 (1998)MathSciNetMATHGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2017

Authors and Affiliations

  • Adérito Araújo
    • 1
  • Silvia Barbeiro
    • 1
  • Eduardo Cuesta
    • 2
  • Ángel Durán
    • 2
  1. 1.CMUC, Department of MathematicsUniversity of CoimbraCoimbraPortugal
  2. 2.Department of Applied MathematicsUniversity of ValladolidValladolidSpain

Personalised recommendations