Cross-Diffusion in Reaction-Diffusion Models: Analysis, Numerics, and Applications

  • Anotida Madzvamuse
  • Raquel Barreira
  • Alf Gerisch
Conference paper
Part of the Mathematics in Industry book series (MATHINDUSTRY, volume 26)


Cross-diffusion terms are nowadays widely used in reaction-diffusion equations encountered in models from mathematical biology and in various engineering applications. In this contribution we review the basic model equations of such systems, give an overview of their mathematical analysis, with an emphasis on pattern formation and positivity preservation, and finally we present numerical simulations that highlight special features of reaction-cross-diffusion models.



AM is a Royal Society Wolfson Research Merit Award Holder generously supported by the Wolfson Foundation. All the authors (AM, RB, AG) thank the Isaac Newton Institute for Mathematical Sciences for its hospitality during the programme Coupling Geometric PDEs with Physics for Cell Morphology, Motility and Pattern Formation; EPSRC EP/K032208/1.


  1. 1.
    Andasari, V., Gerisch, A., Lolas, G., South, A.P., Chaplain, M.A.J.: Mathematical modeling of cancer cell invasion of tissue: biological insight from mathematical analysis and computational simulation. J. Math. Biol. 63(1), 141–171 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Armstrong, N.J., Painter, K.J., Sherratt, J.A.: A continuum approach to modelling cell-cell adhesion. J. Theor. Biol. 243(1), 98–113 (2006)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Bozzini, B., Lacitignola, D., Mele, C., Sgura, I.: Coupling of morphology and chemistry leads to morphogenesis in electrochemical metal growth: a review of the reaction-diffusion approach. Acta Appl. Math. 122(1), 53–68 (2012)MathSciNetzbMATHGoogle Scholar
  4. 4.
    Burger, M., Francesco, M.D., Pietschmann, J.F., Schlake, B.: Nonlinear cross-diffusion with size exclusion. SIAM J. Math. Anal. 42(6), 2842–2871 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Domschke, P., Trucu, D., Gerisch, A., Chaplain, M.A.J.: Mathematical modelling of cancer invasion: implications of cell adhesion variability for tumour infiltrative growth patterns. J. Theor. Biol. 361, 41–60 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Frittelli, M., Madzvamuse, A., Sgura, I., Venkataraman, C.: Lumped finite element method for reaction-diffusion systems on compact surfaces. arXiv:1609.02741 (2016)Google Scholar
  7. 7.
    Gambino, G., Lupo, S., Sammartino, M.: Effects of cross-diffusion on turing patterns in a reaction-diffusion schnakenberg model. arXiv:1501.04890 (2015)Google Scholar
  8. 8.
    Gerisch, A., Chaplain, M.: Robust numerical methods for taxis–diffusion–reaction systems: applications to biomedical problems. Math. Comput. Mod. 43(1–2), 49–75 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Hittmeir, S., Jüngel, A.: Cross diffusion preventing blow-up in the two-dimensional Keller–Segel model. SIAM J. Math. Anal. 43(2), 997–1022 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Madzvamuse, A., Barreira, R.: Exhibiting cross-diffusion-induced patterns for reaction-diffusion systems on evolving domains and surfaces. Phys. Rev. E 90, 043307 (2014)CrossRefGoogle Scholar
  11. 11.
    Madzvamuse, A., Ndakwo, H.S., Barreira, R.: Cross-diffusion-driven instability for reaction-diffusion systems: analysis and simulations. J. Math. Biol. 70(4), 709–743 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Murakawa, H., Togashi, H.: Continuous models for cell–cell adhesion. J. Theor. Biol. 374, 1–12 (2015)CrossRefzbMATHGoogle Scholar
  13. 13.
    Murray, J.D.: Mathematical Biology. I, 3rd edn. Springer, New York (2003)Google Scholar
  14. 14.
    Ni, W.M.: Diffusion, cross-diffusion, and their spike-layer steady states. Not. Am. Math. Soc. 45(1), 9–18 (1998)MathSciNetzbMATHGoogle Scholar
  15. 15.
    Rahman, K.A., Sudarsan, R., Eberl, H.J.: A mixed-culture biofilm model with cross-diffusion. Bull. Math. Biol. 77(11), 2086–2124 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Rahman, K., Sonner, S., Eberl, H.: Derivation of a multi-species cross-diffusion model from a lattice differential equation and positivity of its solutions. Act. Phys. Pol. B 9(1), 121 (2016)Google Scholar
  17. 17.
    Shigesada, N., Kawaasaki, K., Teramoto, E.: Spatial segregation of interacting species. J. Theor. Biol. 79(1), 83–99 (1979)MathSciNetCrossRefGoogle Scholar
  18. 18.
    Smoller, J.: Shock Waves and Reaction-Diffusion Equations, 2nd edn. Springer, New York (1994)CrossRefzbMATHGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2017

Authors and Affiliations

  • Anotida Madzvamuse
    • 1
  • Raquel Barreira
    • 2
  • Alf Gerisch
    • 3
  1. 1.School of Mathematical and Physical Sciences, Department of MathematicsUniversity of SussexBrightonUK
  2. 2.Polytechnic Institute of SetubalBarreiro School of TechnologyBarreiroPortugal
  3. 3.TU Darmstadt, Fachbereich MathematikAG Numerik und Wissenschaftliches RechnenDarmstadtGermany

Personalised recommendations