Advertisement

High Order Extrapolation Techniques for WENO Finite-Difference Schemes Applied to NACA Airfoil Profiles

  • Antonio Baeza
  • Pep Mulet
  • David Zorío
Conference paper
Part of the Mathematics in Industry book series (MATHINDUSTRY, volume 26)

Abstract

Finite-difference WENO schemes are capable of approximating accurately and efficiently weak solutions of hyperbolic conservation laws. In this context high order numerical boundary conditions have been proven to increase significantly the resolution of the numerical solutions. In this paper a finite-difference WENO scheme is combined with a high order boundary extrapolation technique at ghost cells to solve problems involving NACA airfoil profiles. The results obtained are comparable with those obtained through other techniques involving unstructured meshes.

Notes

Acknowledgements

This research was partially supported by Spanish MINECO grant MTM2014-54388-P.

References

  1. 1.
    Baeza, A., Mulet, P., Zorío, D.: High order boundary extrapolation technique for finite difference methods on complex domains with Cartesian meshes. J. Sci. Comput. 66, 761–791 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Baeza, A., Mulet, P., Zorío, D.: High order weighted extrapolation for boundary conditions for finite difference methods on complex domains with Cartesian meshes. J. Sci. Comput. 69, 170–200 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Donat, R., Marquina, A.: Capturing shock reflections: an improved flux formula. J. Comput. Phys. 125, 42–58 (1996)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Feistauer, M., Felcman, J., Straškraba, I.: Mathematical and Computational Methods for Compressible Flow. Clarendon Press, Oxford (2003)zbMATHGoogle Scholar
  5. 5.
    Jiang, G.S., Shu, C.W.: Efficient implementation of Weighted ENO schemes. J. Comput. Phys. 126, 202–228 (1996)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Marquina, A., Mulet, P.: A flux-split algorithm applied to conservative models for multicomponent compressible flows. J. Comput. Phys. 185, 120–138 (2003)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Shu, C.W., Osher, S.: Efficient implementation of essentially non-oscillatory shock-capturing schemes. J. Comput. Phys. 77, 439–471 (1988)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Shu, C.W., Osher, S.: Efficient implementation of essentially non-oscillatory shock-capturing schemes, II. J. Comput. Phys. 83(1), 32–78 (1989)CrossRefzbMATHGoogle Scholar
  9. 9.
    Sjogreen, B., Petersson, N.: A Cartesian embedded boundary method for hyperbolic conservation laws. Commun. Comput. Phys. 2, 1199–1219 (2007)MathSciNetzbMATHGoogle Scholar
  10. 10.
    Tan, S., Shu, C.W.: Inverse Lax-Wendroff procedure for numerical boundary conditions of conservation laws. J. Comput. Phys. 229, 8144–8166 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Tan, S., Wang, C., Shu, C.W., Ning, J.: Efficient implementation of high order inverse Lax-Wendroff boundary treatment for conservation laws. J. Comput. Phys. 231(6), 2510–2527 (2012)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2017

Authors and Affiliations

  1. 1.Departament de MatemàtiquesUniversitat de ValènciaValènciaSpain

Personalised recommendations