Viscoelastic Cosserat Rod Model for Spinning Processes
Conference paper
First Online:
Abstract
Embedded in the special Cosserat theory (slender-body theory) we propose an incompressible viscoelastic rod model that covers viscous and elastic behavior in the asymptotic limits. Its applicability is demonstrated in an industrial fiber spinning process.
Notes
Acknowledgements
This work has been supported by German DFG, project 251706852, MA 4526/2-1, WE 2003/4-1.
References
- 1.Antman, S.S.: Nonlinear Problems of Elasticity. Springer, New York (2006)Google Scholar
- 2.Arne, W., Marheineke, N., Meister, A., Wegener, R.: Numerical analysis of Cosserat rod and string models for viscous jets in rotational spinning processes. Math. Models Methods Appl. Sci. 20(10), 1941–1965 (2010)MathSciNetCrossRefMATHGoogle Scholar
- 3.Arne, W., Marheineke, N., Schnebele, J., Wegener, R.: Fluid-fiber-interactions in rotational spinning process of glass wool manufacturing. J. Math. Ind. 1, 2 (2011)CrossRefMATHGoogle Scholar
- 4.Arne, W., Marheineke, N., Meister, A., Schiessl, S., Wegener, R.: Finite volume approach for the instationary Cosserat rod model describing the spinning of viscous jets. J. Comput. Phys. 294, 20–37 (2015)MathSciNetCrossRefMATHGoogle Scholar
- 5.Baus, F., Klar, A., Marheineke, N., Wegener, R.: Low Mach-number–slenderness limit for elastic Cosserat rods (2015). arXiv:1507.03432Google Scholar
- 6.Meligan, K.: Asymptotical and Numerical Analysis of Viscoelastic Material Laws for Fiber-Modelling. Master’s thesis, FAU Erlangen-Nürnberg (2016)Google Scholar
- 7.Ribe, N.M.: Coiling of viscous jets. Proc. R. Soc. Lond. A 2051, 3223–3239 (2004)MathSciNetCrossRefMATHGoogle Scholar
- 8.Ribe, N.M., Habibi M., Bonn, D.: Stability of liquid rope coiling. Phys. Fluids 18, 084102 (2006)MathSciNetCrossRefMATHGoogle Scholar
- 9.Wegener, R., Marheineke, N., Hietel, D.: Virtual production of filaments and fleeces. In: Neunzert, H., Prätzel-Wolters, D. (eds.) Currents in Industrial Mathematics: From Concepts to Research to Education, pp. 103–162. Springer, Heidelberg (2015)CrossRefGoogle Scholar
Copyright information
© Springer International Publishing AG, part of Springer Nature 2017