Advertisement

Aerodynamic Web Forming: Pareto-Optimized Mass Distribution

  • Nicole Marheineke
  • Sergey Antonov
  • Simone Gramsch
  • Raimund Wegener
Conference paper
Part of the Mathematics in Industry book series (MATHINDUSTRY, volume 26)

Abstract

In the technical textile industry an objective of the airlay process is the production of high quality nonwoven fabrics with the minimal use of fiber raw material. Since a process simulation of the multi-scale two-phase problem is very computationally expensive, we deduce an efficiently evaluable surrogate model to handle the multi-criteria optimization task.

Notes

Acknowledgements

The financial support of the German Bundesministerium für Bildung und Forschung, Project OPAL 05M13, is acknowledged.

References

  1. 1.
    Albrecht, W., Fuchs, H., Kittelmann, W. (eds.): Nonwoven Fabrics: Raw Materials, Manufacture, Applications, Characteristics, Testing Processes. Wiley, New York (2006)Google Scholar
  2. 2.
    Ehrgott, M.: Multicriteria Optimization. Springer, Heidelberg (2000)CrossRefzbMATHGoogle Scholar
  3. 3.
    Engl, H.W., Hanke, M., Neubauer, A.: Regularization of Inverse Problems. Springer, Berlin (1996)CrossRefzbMATHGoogle Scholar
  4. 4.
    Gramsch, S., Klar, A., Leugering, G., Marheineke, N., Nessler, C., Strohmeyer, C., Wegener, R.: Aerodynamic web forming: process simulation and material properties. J. Math. Ind. 6(13), 1–23 (2016)MathSciNetzbMATHGoogle Scholar
  5. 5.
    Wegener, R., Marheineke, N., Hietel, D.: Virtual production of filaments and fleeces. In: Neunzert, H., Prätzel-Wolters, D. (eds.) Currents in Industrial Mathematics: From Concepts to Research to Education, pp. 103–162. Springer, Heidelberg (2015)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2017

Authors and Affiliations

  • Nicole Marheineke
    • 1
  • Sergey Antonov
    • 2
  • Simone Gramsch
    • 2
  • Raimund Wegener
    • 2
  1. 1.FAU Erlangen-NürnbergErlangenGermany
  2. 2.Fraunhofer ITWMKaiserslauternGermany

Personalised recommendations