Modeling Oxygen Consumption in Germinating Seeds

  • Neil Budko
  • Bert van Duijn
  • Sander Hille
  • Fred Vermolen
Conference paper
Part of the Mathematics in Industry book series (MATHINDUSTRY, volume 26)


The consumption of oxygen by a germinating seed is assumed to be a good indicator of seed vitality and can potentially be used to predict the germination time. With the current availability of relatively simple single-seed respiration measurement methods and more oxygen consumption data opportunities emerge for detailed analysis of the underlying mechanisms relating respiration to germination processes. Due to the complex (structural and physiological) nature of seeds experimental analysis alone is very difficult. Mathematical modeling may provide an insight into the relationship between the germination of seeds and respiration. We have approached this problem by considering the population dynamics of mitochondria in seeds subject to limited oxygen supply and present a simple but rigorous and easily testable mathematical model that can handle large amounts of data and is interpretable in terms of the effective biological parameters of the seeds.


  1. 1.
    Arciuch, V.G.A., Elguero, M.E., Poderoso, J.J., Carreras, M.C.: Mitochondrial regulation of cell cycle and proliferation. Antioxid. Redox Signal. 16(10), 1150–1180 (2012)CrossRefGoogle Scholar
  2. 2.
    Bewley, J.D.: Seed germination and dormancy. Plant Cell 9, 1055–1066 (1997)CrossRefGoogle Scholar
  3. 3.
    Bewley, J.D., Bradford, K.J., Hilhorst, H.W.M., Nonogaki, H.: Seeds: Physiology of Development, Germination and Dormancy, 3rd edn. Springer, New York/Heidelberg/Dordrecht/London (2013)CrossRefGoogle Scholar
  4. 4.
    Bradford, K.J., Bello, P., Fu, J.-C., Barros, M.: Single-seed respiration: a new method to assess seed quality. Seed Sci. Technol. 41, 420–438 (2013)CrossRefGoogle Scholar
  5. 5.
    Budko, N., Corbetta, A., van Duijn, B., Hille, S., Krehel, O., Rottschäfer, V., Wiegman, L., Zhelyazov, D.: Oxygen transport and consumption in germinating seeds. In: Proceedings of the 90th European Study Group Mathematics with Industry, Leiden, 28 January–1 February 2013, pp. 5–30Google Scholar
  6. 6.
    Cannell, M.G.R., Thornley, J.H.M.: Modelling the components of plant respiration: some guiding principles. Ann. Bot. 85(1), 45–54 (2000)CrossRefGoogle Scholar
  7. 7.
    Carrie, C., Murcha, M.W., Giraud, E., Ng, S., Zhang, M.F., Narsai, R., Whelan, J.: How do plants make mitochondria? Planta (2012). doi:10.1007/s00425-012-1762-3Google Scholar
  8. 8.
    Gerritsen, H.C., Sanders, R., Draaijer, A., Ince, C., Levine, Y.K.: Fluorescence lifetime imaging of oxygen in living cells. J. Fluoresc. 7(1), 11–15 (1997)CrossRefGoogle Scholar
  9. 9.
    Gnaiger, E., Steinlechner-Maran, R., Méndez, G., Eberl, T., Margreiter, R.: Control of mitochondrial and cellular respiration by oxygen. J. Bioenerg. Biomembr. 27(6), 583–596 (1995)CrossRefGoogle Scholar
  10. 10.
    James, W.O., James, A.L.: The respiration of barley germinating in the dark. New Phytol. 39(2), 145–177 (1940)CrossRefGoogle Scholar
  11. 11.
    Kozusko, F., Bourdeau, M.: A unified model of sigmoid tumour growth based on cell proliferation and quiescence. Cell Prolif. 40, 824–834 (2007)CrossRefGoogle Scholar
  12. 12.
    Lifshitz, I.M., Slyozov, V.V.: The kinetics of precipitation from supersaturated solid solutions. J. Phys. Chem. Solids 19, 35–50 (1961)CrossRefGoogle Scholar
  13. 13.
    Logan, D.C., Harvey Millar, A., Sweetlove, L.J., Hill, S.A., Leaver, C.J.: Mitochondrial biogenesis during germination in maize embryos. Plant Physiol. 125, 662–672 (2001)CrossRefGoogle Scholar
  14. 14.
    Merchant, D.J., Kuchler, R.B., Munyo, W.: Population dynamics in suspension cultures of an animal cell strain. J. Biochem. Microbiol. Technol. Eng. II, 253–266 (1960)Google Scholar
  15. 15.
    Van Asbrouck, J., Taridno, P.: Using the single seed oxygen consumption measurement as a method of determination of different seed quality parameters for commercial tomato seed samples. Asian J. Food Agro-Ind. 2, S88–S95 (2009)Google Scholar
  16. 16.
    Van Duijn, A., Koenig, W.: Measuring metabolic rate changes. Patent 2001 EP1134583 (A1) WO0169243 (A1) US2004033575 (A1) CA2403253 (A1) DE60108480TGoogle Scholar
  17. 17.
    Wagner, C.: Theorie der Alterung von Niederschlägen durch Umlösen (Ostwald-Reifung). Z. Elektrochem. 65, 581–591 (1961)Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2017

Authors and Affiliations

  • Neil Budko
    • 1
  • Bert van Duijn
    • 2
  • Sander Hille
    • 2
  • Fred Vermolen
    • 1
  1. 1.Delft Institute of Applied Mathematics, Delft University of TechnologyDelftThe Netherlands
  2. 2.Mathematical InstituteLeiden UniversityLeidenThe Netherlands

Personalised recommendations