Topics in Magnetic Force Theory: Some Avatars of the Helmholtz Formula

Conference paper
Part of the Mathematics in Industry book series (MATHINDUSTRY, volume 26)

Abstract

There is a great variety of formulas purporting to describe the force field inside magnetized matter. They don’t always agree, which is puzzling. Starting from the Korteweg–Helmholtz formula, obtained thanks to the highly reliable Virtual Power Principle (VPP), we show how variant expressions can result from algebraic manipulations that assume, without making this explicit, extra physical hypotheses. Those we discuss here, assuming a B = μH magnetic law, are (1) Dependence of μ on density, (2) Incompressibility of the magnetic medium in which the magnetic forces develop.

References

  1. 1.
    Bailey, R.L.: Lesser known applications of ferrofluids. J. Magn. Magn. Mater. 39, 178–182 (1983)CrossRefGoogle Scholar
  2. 2.
    Bossavit, A.: On forces in magnetic matter. IEEE Trans. Magn. 50, 229–232 (2014)CrossRefGoogle Scholar
  3. 3.
    Bossavit, A.: Discrete magneto-elasticity: a geometrical approach. IEEE Trans. Magn. 46, 3485–3491 (2010)CrossRefGoogle Scholar
  4. 4.
    Bossavit, A.: Bulk forces and interface forces in assemblies of magnetized pieces of matter. IEEE Trans. Magn. 52, 7003504 (2016)CrossRefGoogle Scholar
  5. 5.
    Engel, A., Friedrichs, R.: On the electromagnetic force on a polarizable body. Am. J. Phys. 70, 428–432 (2002)CrossRefGoogle Scholar
  6. 6.
    von Helmholtz, H.: Über die auf das innere Magnetisch oder dielectrisch Polarisirter Körper wirkender Kräfte. Ann. d. Phys. und Chem. 13, 385–406 (1881)CrossRefGoogle Scholar
  7. 7.
    Heyrendt, L.: Études des actions des forces magnétiques volumiques créées par un champ magnétique intense sur des fluides à seuil (Thesis, University of Lorraine). http://www.theses.fr/2012LORR0224. (2012). Accessed 25 Nov 2016
  8. 8.
    Liu, M.: Range of validity for the Kelvin force. Phys. Rev. Lett. 84, 2762 (2000)CrossRefGoogle Scholar
  9. 9.
    Luo, W., Du, T., Huang, J.: Novel convective instabilities in a magnetic field. Phys. Rev. Lett. 82, 4134–4137 (1999)CrossRefGoogle Scholar
  10. 10.
    Odenbach, S., Liu, M.: Invalidation of the Kelvin force in ferrofluids. Phys. Rev. Lett. 86, 1615–1631 (2001)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2017

Authors and Affiliations

  1. 1.GeePs (ex. LGEP), Centrale-SupelecGif-sur-YvetteFrance

Personalised recommendations