Advertisement

Comparison of Scharfetter-Gummel Flux Discretizations Under Blakemore Statistics

  • Patricio Farrell
  • Thomas Koprucki
  • Jürgen Fuhrmann
Conference paper
Part of the Mathematics in Industry book series (MATHINDUSTRY, volume 26)

Abstract

We discretize the semiconductor device equations assuming a Blakemore distribution function using a finite volume scheme and compare three thermodynamically consistent Scharfetter-Gummel type flux discretizations, namely the exact solution to a two-point boundary value probem and two fluxes incorporating certain averages. In order to do this, we simulate an n-i-n semiconductor device and study the electron densities as well as the total current. While the diffusion-enhanced flux approximation using logarithmic averaging of the nonlinear diffusion enhancement behaves somewhat similarly to the exact solution of the two-point boundary value problem (the generalized Scharfetter-Gummel scheme), the scheme based on averaging the inverse activity coefficients scheme exhibits a noticeably different behavior.

References

  1. 1.
    Bessemoulin-Chatard, M.: A finite volume scheme for convection-diffusion equations with nonlinear diffusion derived from the Scharfetter-Gummel scheme. Numer. Math. 121, 637–670 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Blakemore, J.S.: The parameters of partially degenerate semiconductors. Proc. Phys. Soc. Lond. A 65, 460–461 (1952)CrossRefzbMATHGoogle Scholar
  3. 3.
    Doan, D.H., Farrell, P., Fuhrmann, J., Kantner, M., Koprucki, T., Rotundo, N.: ddfermi - a drift-diffusion simulation tool. Version: 0.1.0. doi:http://doi.org/10.20347/WIAS.SOFTWARE.14Google Scholar
  4. 4.
    Eymard, R., Fuhrmann J., Gärtner K.: A finite volume scheme for nonlinear parabolic equations derived from one-dimensional local dirichlet problems. Numer. Math. 102, 463–495 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Farrell, P., Rotundo, N., Doan, D.H., Kantner, M., Fuhrmann, J., Koprucki, T.: Electronics: numerical methods for drift-diffusion models. In: Pipreck, J. (ed.) Handbook of Optoelectronic Device Modeling and Simulation. Taylor & Francis, UK (to appear 2017)Google Scholar
  6. 6.
    Fuhrmann, J.: Comparison and numerical treatment of generalised Nernst-Planck models. Comput. Phys. Commun. 196, 166–178 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Koprucki, T., Gärtner, K.: Discretization scheme for drift-diffusion equations with strong diffusion enhancement. Opt. Quant. Electron. 45, 791–796 (2013)CrossRefGoogle Scholar
  8. 8.
    Koprucki, T., Rotundo, N., Farrell, P., Doan, D.H., Fuhrmann, J.: On thermodynamic consistency of a Scharfetter-Gummel scheme based on a modified thermal voltage for drift-diffusion equations with diffusion enhancement. Opt. Quant. Electron. 47, 1327–1332 (2015)CrossRefGoogle Scholar
  9. 9.
    Scharfetter, D.L., Gummel, H.K.: Large signal analysis of a silicon Read diode. IEEE Trans. Electron. Dev. 16, 64–77 (1969)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2017

Authors and Affiliations

  • Patricio Farrell
    • 1
  • Thomas Koprucki
    • 1
  • Jürgen Fuhrmann
    • 1
  1. 1.Weierstrass Institute (WIAS)BerlinGermany

Personalised recommendations