Advertisement

Parameterized Model Order Reduction by Superposition of Locally Reduced Bases

  • Tino Soll
  • Roland Pulch
Conference paper
Part of the Mathematics in Industry book series (MATHINDUSTRY, volume 26)

Abstract

We present an approach for model order reduction of parameterized linear dynamical systems which combines local reduced bases using singular value decompositions. The local reduced bases are computed for a fixed set of sample points in the parameter domain by moment matching techniques. Covering the parameter domain with sample points may yield a very large set of samples. We investigate a superposition approach that takes only a few of the local models into account to keep the resulting reduced dimension small. Our approach will be compared to one existing approach which directly interpolates local bases in some illustrating numerical experiments.

References

  1. 1.
    Ansalem, D., Farhat, C.: Interpolation method for adapting reduced-order models and application to aeroelasticity. AIAA J. 46(7), 1803–1813 (2008)CrossRefGoogle Scholar
  2. 2.
    Antoulas, A.C.: Approximation of Large-Scale Dynamical Systems. SIAM Publications, Philadelphia (2005)CrossRefzbMATHGoogle Scholar
  3. 3.
    Baur, U., Beattie, D., Benner, P., Gugercin, S.: Interpolatory projection methods for parameteterized model reduction, SIAM J. Sci. Comput. 33, 2489–2518 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Benner, P., Gugercin, S., Willcox, K.: A survey of projection-based model reduction methods for parametric dynamical systems. SIAM Rev. 57(4), 483–531 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Freund, R.: Model reduction methods based on Krylov subspaces. Acta Numer. 12, 267–319 (2003)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Lohmann, B., Eid, R.: Efficient order reduction of parametric and nonlinear models by superposition of locally reduced models. In: Roppenecker, G., Lohmann, B. (eds.) Methoden und Anwendungen der Regelungstechnik. Erlangen-Münchener Workshops 2007 und 2008. Shaker, Aachen (2009)Google Scholar
  7. 7.
    Moosmann, C.: ParaMOR - Model Order Reduction for parameterized MEMS applications. PhD thesis, University of Freiburg, Germany (2007)Google Scholar
  8. 8.

Copyright information

© Springer International Publishing AG, part of Springer Nature 2017

Authors and Affiliations

  1. 1.Institut für Mathematik und InformatikErnst-Moritz-Arndt-Universität GreifswaldGreifswaldGermany

Personalised recommendations