Prototype Model of Autonomous Offshore Drilling Complex

  • Sergey Lupuleac
  • Evgeny Toropov
  • Andrey Shabalin
  • Mikhail Kirillov
Conference paper
Part of the Mathematics in Industry book series (MATHINDUSTRY, volume 26)


The prototype model of autonomous offshore drilling complex consists of several sub models corresponding to different considered phenomena: vibrations of drilling string; circulation of drilling mud; mud filtration; deformation of the liquid filled soil and so on. All sub models are combined into unified prototype model and exchange data during simulations.

The project of prototype model development is launched jointly by St. Petersburg Polytechnic University and Rubin ship design bureau. Specialized in software code is developed and used for simulation by applying methods from different branches of computational mechanics.


  1. 1.
    Andrade, E.N., Randall, R., Makin, M.: The Rehbinder effect. Proc. Roy. Soc. B 63, 990 (1950)Google Scholar
  2. 2.
    Basniev, K.C., Dmitriev, N.M., Rosenberg, G.D.: Nephtegasovaya gidromehanika [Oil and gas hydromechanics] — M.–Igevsk: Inst. komp. issl. (2005)Google Scholar
  3. 3.
    Beznea, L., Deaconu, M., Lupas, O.: Branching processes for the fragmentation equation. Stoch. Process Appl. 125, 1861–1885 (2015)Google Scholar
  4. 4.
    Faruk, C.: Reservoir Formation Damage. Fundamentals, Modeling, Assessment and Mitigation, 2nd edn. Elsevier Inc., Amsterdam (2007)Google Scholar
  5. 5.
    Filipov, A.F.: O raspredelenii razmerov chastitz pri droblenii (On the distribution of particle sizes by crushing).TVP. 3(6), 299–318 (1961) (in Russian)Google Scholar
  6. 6.
    Gulyaev, V., Gaidaichuk, V., Solov’ev, I., Gorbunovicha I.: Quasistatic critical states of strings for deep dilling. Strength Mater. 38(5), 527–534 ( 2006)Google Scholar
  7. 7.
    Ishii, M., Hibiki, T.: Thermo-Fluid Dynamics of Two-Phase Flow, 2nd edn., 537 pp. Springer, Berlin (2011)Google Scholar
  8. 8.
    Leonov, E.G., Isaev, V.I.: Gidroaeromechinika v burenii[Hydroaeromechanics in drilling]: Ucheb. – M.: Nedra, 304 c. (1987) (in Russian)Google Scholar
  9. 9.
    Li, J., Yan, T., Sun, X., Peng, S.: Finite element analysis on drilling string axial vibration in a crooked hole. Proceedings of ICPTT-. Wuhan, China, pp. 1328–1334 (2012)Google Scholar
  10. 10.
    Manninen, M., Taivassalo, V.: On the Mixture Model for Multiphase Flow, 67 p. Espoo (1996)Google Scholar
  11. 11.
    Marshall, D.W., Bentsen, R.G.: A computer model to determine the temperature distributions in a wellbore. J. Can. Pet. Technol. 21(1), 63–75 (1982)Google Scholar
  12. 12.
    Mou, Y., Yingfeng, M., Gao, L., et al.: Estimation of wellbore and formation temperatures during the drilling process under lost circulation conditions. Math. Probl. Eng. 2013, 11 (2013)Google Scholar
  13. 13.
    Partial Differential Equation Toolbox: User’s Guide MATLAB R2016a, MathWorks Inc, (2016)Google Scholar
  14. 14.
    Patankar, S.V.: Numerical Heat Transfer and Fluid Flow, 205 pp. CRC Press, Boca Raton (1980)Google Scholar
  15. 15.
    Wagner, W.: Random and deterministic fragmentation models. Monte Carlo Methods Appl. 16, 399–420 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Wu, A., Hareland, G., Fazaelizadeh, M.: Torque and drag analysis using finite element method. Mod. Appl. Sci. 5(6), 13–27 (2011)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2017

Authors and Affiliations

  • Sergey Lupuleac
    • 1
  • Evgeny Toropov
    • 2
  • Andrey Shabalin
    • 2
  • Mikhail Kirillov
    • 2
  1. 1.Peter the Great St.Petersburg Polytechnic UniversitySt.PetersburgRussia
  2. 2.Central Design Bureau for Marine Engineering “Rubin”St. PetersburgRussia

Personalised recommendations