Advertisement

Radioiodine Therapy of Thyroid Cancer Dosimetry

  • Lorenzo Bianchi
Chapter

Abstract

Radioactive iodine therapy has been established in the management of patients with metastatic thyroid cancer therapy. The optimal activity to be administered has been under discussion since its first use. The activity can be determined using two approaches, empiric and dosimetry based. Administering an empirical activity is low cost and easy, and the rate and severity of side effects are well known and accepted. However, it can lead to undertreat or overtreat patients, due to the different specific characteristics of the iodine kinetics in each patient.

Therefore, an individual dosimetry-based approach is advisable to determine the correct activity to be administered in order to be effective and, at the same time, to limit severe side effects.

Here a simple method to perform individual dosimetry is proposed, based on the Committee on Medical Internal Radiation Dose schema. It can be applied both to perspective and peri-therapy dosimetry, depending on the goal and the available resources; since it improves awareness in taking a decision in patient’s management, it represents a powerful instrument to support clinical strategies aimed at improving safety and efficacy of treatments.

Keywords

Thyroid cancer Radioactive iodine therapy Individual dosimetry Treatment optimization Perspective dosimetry Peri-therapy dosimetry 

References

  1. 1.
    Luster M, Clarke SE, Dietlein M, et al. Guidelines for radioiodine therapy of differentiated thyroid cancer. Eur J Nucl Med Mol Imaging. 2008;35:1941–59.CrossRefPubMedGoogle Scholar
  2. 2.
    Seidlin SM, Marinelli LD, Oshry E. Radioactive iodine therapy: effect on functioning metastases of adenocarcinoma of thyroid. JAMA. 1946;132:838–47.CrossRefGoogle Scholar
  3. 3.
    Benua RS, Cicale NR, Sonemberg M, Rawson RW. The relation of radioiodine dosimetry to results and complications in the treatment of metastatic thyroid cancer. Am J Roentgenol Radium Therapy, Nucl Med. 1962;87:171–82.Google Scholar
  4. 4.
    Benua RS, Leeper RD. A method and rationale for treating metastatic thyroid carcinoma with the largest safe dose of I-131. In: Medeiros-Neto G, Gaitan E, editors. Frontiers in thyroidology, vol. 2. New York: Plenum Medical Book; 1986. p. 1317–21.Google Scholar
  5. 5.
    Hurley JR, Becker DV. The use of radioiodine in the management of thyroid cancer. In: Freeman LM, Weissmann HS, editors. Nuclear medicine annual. New York: Raven Press; 1983. p. 329.Google Scholar
  6. 6.
    Maxon HR, Thomas SR, Hertzberg VS, Kerejakes JG, Chen IW, Sperling MI, Saenger EI. Relation between effective radiation dose and outcome of radioiodine therapy for thyroid cancer. N Engl J Med. 1983;309:937–41.CrossRefPubMedGoogle Scholar
  7. 7.
    Jentzen W, Verschure V, van Zon A, van de Kolk R, Wierts R, Schmitz J, Bockisch A, Binse I. 124I PET Assessment of response of bone metastases to initial radioiodine treatment of differentiated thyroid cancer. J Nucl Med. 2016;57:1499–504.CrossRefPubMedGoogle Scholar
  8. 8.
    Klubo-Gwiezdzinska J, Van Nostrand D, Atkins F, Burman K, Jonklaas J, Mete M, Wartofsky L. Efficacy of dosimetric versus empiric prescribed activity of 131I for therapy of differentiated thyroid cancer. J Clin Endocrinol Metab. 2011;96:3217–25.CrossRefPubMedGoogle Scholar
  9. 9.
    Stabin MG, Sparks RB, Crowe E. OLINDA/EXM: the second-generation personal computer software for internal dose assessment in nuclear medicine. J Nucl Med. 2005;46:1023–7.PubMedGoogle Scholar
  10. 10.
    Heinscheid H, Lassmann M, Luster M, Kloos RT, Reiners C. Blood dosimetry from a single measurement of the whole body radioiodine retention in patients with differentiated thyroid carcinoma. Endocr Relat Cancer. 2009;16:1283–9.CrossRefGoogle Scholar
  11. 11.
    Siegel JA, et al. MIRD pamphlet no. 16: techniques for quantitative radiopharmaceutical biodistribution data acquisition and analysis for use in human radiation dose estimates. J Nucl Med. 1999;40:37S–61S.PubMedGoogle Scholar
  12. 12.
    International Commission on Radiological Protection Publication 70. Basic anatomical & physiological data for use in radiological protection – the skeleton. In: Ann. Annals of the ICRP, vol 25(2). Oxford:Pergamon Press; 1995.Google Scholar
  13. 13.
    Haugen BR, et al. 2015 American Thyroid Association management guidelines for adult patients with thyroid nodules and differentiated thyroid cancer. Thyroid. 2016;26:1–160.CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Pattison DA, Solomon B, Hicks RJ. A new theranostic paradigm for advanced thyroid cancer. J Nucl Med. 2016;57:1493–4.CrossRefPubMedGoogle Scholar
  15. 15.
    Pacini F, Lippi F, Formica N, Elisei R, Anelli S, Ceccarelli C, et al. Therapeutic doses of iodine-131 reveal undiagnosed metastases in thyroid cancer patients with detectable serum thyroglobulin levels. J Nucl Med. 1987;28:1888–91.PubMedGoogle Scholar
  16. 16.
    Cholewinski SP, Yoo KS, Klieger PS, O’Mara RE. Absence of thyroid stunning after diagnostic whole-body scanning with 185 MBq 131I. J Nucl Med. 2000;41:1198–202.PubMedGoogle Scholar
  17. 17.
    Park HM, Perkins OW, Edmondson JW, Schnute RB, Manatunga A. Influence of diagnostic radioiodines on the uptake of ablative dose of iodine-131. Thyroid. 1994;4:49–54.CrossRefPubMedGoogle Scholar
  18. 18.
    Miranti A, Giostra A, Richetta E, Gino E, Pellerito RE, Stasi M. Comparison of mathematical models for red marrow and blood absorbed dose estimation in the radioiodine treatment of advanced thyroid carcinoma. Phys Med Biol. 2015;60:1141–57.CrossRefPubMedGoogle Scholar
  19. 19.
    Heinsched H, et al. Iodine biokinetics and dosimetry in radioiodine therapy of thyroid cancer: procedures and results of a prospective international controlled study of ablation after rhTSH or hormone withdrawal. J Nucl Med. 2006;47:648–54.Google Scholar
  20. 20.
    Brans B, Bodei L, Giammarile F, Linden O, Luster M, Oyen WJG, Tennvall J. Clinical radionuclide therapy dosimetry: the quest for the “Holy Gray”. Eur J Nucl Med Mol Imaging. 2007;34:772–86.CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Dorn R, Kopp J, Vogt H, Heidenreich P, Carroll RG, Gulec SA. Dosimetry-guided radioactive iodine treatment in patients with metastatic differentiated thyroid cancer: largest safe dose using a risk-adapted approach. J Nucl Med. 2003;44:451–6.PubMedGoogle Scholar
  22. 22.
    Bianchi L, Baroli A, Lomuscio G, Pedrazzini L, Pepe A, Pozzi L, Chiesa C. Dosimetry in the therapy of metastatic differentiated thyroid cancer administering high 131I activity: the experience of Busto Arsizio Hospital (Italy). Q J Nucl Med Mol Imaging. 2012;56:515–21.PubMedGoogle Scholar
  23. 23.
    Fard-Esfahani A, Emami-Ardekani A, Fallahi B, Fard-Esfahani P, Beikia D, Hassanzadeh-Rada A, Eftekharia M. Adverse effects of radioactive iodine-131 treatment for differentiated thyroid carcinoma. Nucl Med Commun. 2014;35:811–7.Google Scholar
  24. 24.
    Bolch WE, Bouchet LG, Robertson JS, Wessels BW, Siegel JA, Howell RW, Erdi AK, Aydogan B, Costes S, Watson EE. MIRD pamphlet no. 17: the dosimetry of nonuniform activity distributions—radionuclide S values at the voxel level. J Nucl Med. 1999;40:118–368.Google Scholar
  25. 25.
    Phan HTT, Jager PL, Paans MJ, Plukker JTM, Sturkenboom MGG, Sluiter WJ, Wolffenbuttel BHR, Dierckx RAJO, Links TP. The diagnostic value of 124I-PET in patients with differentiated thyroid cancer. Eur J Nucl Med Mol Imaging. 2008;35:958–65.CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Pettinato C, Monari F, Nanni C, Allegri V, Marcatili S, Civollani S, Cima S, Spezi E, Mazzarotto R, Fanti S. Usefulness of 124I PET/CT imaging to predict absorbed doses in patients affected by metastatic thyroid cancer and treated with 131I. Q J Nucl Med Mol Imaging. 2012;56:509–14.PubMedGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Struttura Complessa di Fisica SanitariaASST della Valle OlonaBusto ArsizioItaly

Personalised recommendations