Dosimetry in the Radioiodine Treatment of Hyperthyroidism

  • Cristina Canzi
  • Antonio Claudio Traino


Radioiodine therapy has largely replaced surgery and is nowadays commonly used because it is easy to perform and has proved to be effective in the definitive treatment of hyperthyroidism.

Hundreds of thousands of patients have been treated all over the world, but still there isn’t a clear evidence about the optimal method to determine the activity to administer to reach the therapeutic objective. The discussion is still open on when to use fixed activities or to perform a pre-therapeutic dosimetric study to personalize the administered activity to the single patient’s morphological and metabolic characteristics. The rationale behind pretreatment personalized dosimetry is to determine the 131I activity that is most likely to lead to the therapeutic success but that limits the radiation exposure to the strictly necessary amount as also required by the recent European Directives about protection against the dangers due to ionizing radiation. Hyperthyroidism is a benign condition, so the aim of the treatment is to heal it in a short time with the minimum activity and, if possible, with a unique administration. Personalized dosimetry aims to tailor the therapeutic activity to be administered to the morphological and metabolic characteristics of each patient’s thyroid because there is quite a wide interpatient variability. Some indications about how to perform a personalized dosimetry are reported with a short review of literature data about the clinical results of different methods.


Hyperthyroidism Radioiodine treatment Personalized dosimetry Interpatient variability I131 Iodine kinetics Thyroid Dosimetric methods Graves’ disease Thyroid nodules 


  1. 1.
    McCready VR. Radioiodine – the success story of nuclear medicine. Eur J Nucl Med Mol Imaging. 2017;44:179–82.CrossRefPubMedGoogle Scholar
  2. 2.
    Stokkel MPM, Handkiewicz Junak D, Lassmann M, Dietlin M, Luster M. EANM procedure guidelines for therapy of benign thyroid disease. Eur J Nucl Med Mol Imaging. 2010;37:2218–28.CrossRefPubMedGoogle Scholar
  3. 3.
    Salvatori M, Luster M. Radioiodine therapy dosimetry in benign thyroid disease and differentiated thyroid carcinoma. Eur J Nucl Med Mol Imaging. 2010;37:821–8.CrossRefPubMedGoogle Scholar
  4. 4.
    Council Directive 97/43/Euratom of 30 June 1997 on health protection of individuals against the dangers of ionizing radiation in relation to medical exposure, and repealing Directive 84/466/Euratom. Off J Eur Communities. 1997;180:07.Google Scholar
  5. 5.
    Council Directive 2013/59/Euratom of 5 December 2013 laying down basic safety standards for protection against the dangers arising from exposure to ionising radiation, and repealing Directives 89/618/Euratom, 90/641/Euratom, 96/29/Euratom, 97/43/Euratom and 2003/122/Euratom. Off J Eur Communities. 2014.Google Scholar
  6. 6.
    Collins FS, Varmus H. A new initiative on precision medicine. N Engl J Med. 2015;372:793–5.CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Dietlin M, Grunwald F, Schmidt M, Schneider P, Verburg FA, Luster M. Radioiodtherapie bei benignen Schilddrüsenerkrankungen (Version 5). Nuklearmedizin. 2016;55:213–20.CrossRefGoogle Scholar
  8. 8.
    Giovannella L, Salvatori M,Testori O, Brianzoni E, Pace L, Perotti G, Dottorini M, Traino C, Bodei L, Chiesa, C, Rufini, V, Castellani R. Raccomandazioni procedurali per la terapia medico-nucleare. 2012.Google Scholar
  9. 9.
    Hanscheid H, Canzi C, Eschner W, Flux G, Luster M, Strigari L, Lassmann M. EANM Dosimetry Committee series on standard operational procedures for pre-therapeutic dosimetry II. Dosimetry prior to radioiodine therapy of benign thyroid disease. Eur J Nucl Med Mol Imaging. 2013;40:1126–34.CrossRefPubMedGoogle Scholar
  10. 10.
    Bockish A, Jamitzky T, Derwanz R, Biersack HJ. Optimized dose planning of radioiodine therapy of benign thyroidal diseases. J Nucl Med. 1993;34:1632–8.Google Scholar
  11. 11.
    Hilditch TE, Dempsey MF, Bolster AA, McMenemin RM, Reed NS. Self-stunning in thyroid ablation: evidence from comparative studies of diagnostic 131I and 123I. Eur J Nucl Med. 2002;29:783–8.CrossRefGoogle Scholar
  12. 12.
    Canzi C, Zito F, Voltini F, Reschini E, Gerundini P. Verification of the agreement of two dosimetric methods with radioiodine therapy in hyperthyroid patients. Med Phys. 2006;33:2860–7.CrossRefPubMedGoogle Scholar
  13. 13.
    Traino AC, Grosso M, Mariani G. Possibility of limiting the unjustified irradiation in 131I therapy of Graves’ disease: a thyroid mass-reduction based method for the optimum activity calculation. Phys Med. 2010;26:71–9.CrossRefPubMedGoogle Scholar
  14. 14.
    Orsini F, Traino AC, Grosso M, Guidoccio F, Boni G, Volterrani D, Mariani G. Personalization of radioiodine treatment for Graves’ disease: a prospective, randomized study with a novel method for calculating the optimal 131I-iodide activity based on target reduction of thyroid mass. Q J Nucl Med Mol Imaging. 2012;56:496–502.PubMedGoogle Scholar
  15. 15.
    Di Martino F, Traino AC, Brill AB, Stabin MG, Lazzeri M. A theoretical model for prescription of the patient-specific therapeutic activity for radioiodine therapy of Graves’ disease. Phys Med Biol. 2002;47:1493–9.CrossRefPubMedGoogle Scholar
  16. 16.
    Traino AC, Di Martino F, Grosso M, Monzani F, Dardano A, Caraccio N, Mariani G, Lazzeri M. A predictive mathematical model for the calculation of the final mass of Graves’ disease thyroids treated with 131I. Phys Med Biol. 2005;50:2181–91.CrossRefPubMedGoogle Scholar
  17. 17.
    Traino AC, Di Martino F, Grosso M, Monzani F, Dardano A, Caraccio N, Mariani G, Lazzeri M. A study of the possibility of curing Graves’ disease based on the desired reduction of thyroid mass (volume) as a consequence of 131I therapy: a speculative paper. Nucl Med Commun. 2006;27:439–46.CrossRefPubMedGoogle Scholar
  18. 18.
    Peters H, Fischer C, Bogner U, Reiners C, Schleusener H. Radioiodine therapy of Graves’ hyperthyroidism: standard vs. calculated 131-iodine activity. Results from a prospective, randomized, multicentre study. Eur J Clin Investig. 1995;25:186–93.CrossRefGoogle Scholar
  19. 19.
    Peters H, Fischer C, Bogner U, Reiners C, Schleusener H. Treatment of Graves’ hyperthyroidism with radioiodine: results of a prospective randomized study. Thyroid. 1997;7(2):247–51.CrossRefPubMedGoogle Scholar
  20. 20.
    Reinhardt MJ, Brink I, Joe AY, von Mallek D, Ezziddin S, Palmedo H, Krause TM. Radioiodine therapy in Graves’ disease based on tissue-absorbed dose calculations: effect of pre-treatment thyroid volume on clinical outcome. Eur J Nucl Med. 2002;29(9):1118–24.CrossRefGoogle Scholar
  21. 21.
    Bajnok L, Mezosi E, Nagy E, Szabo J, Sztojka I, Varga J, Galuska L, Leovey A. Calculation of the radioiodine dose for the treatment of Graves’ hyperthyroidism: is more than seven-thousand rad target dose necessary? Thyroid. 1999;9(9):865–9.CrossRefPubMedGoogle Scholar
  22. 22.
    Howarth D, Epstein M, Lan L, Tan P, Booker J. Determination of the optimal minimum radioiodine dose in patients with Graves’ disease: a clinical outcome study. Eur J Nucl Med. 2001;28(10):1489–95.CrossRefPubMedGoogle Scholar
  23. 23.
    Gomez-Arnaiz N, Andia E, Guma A, Abos R, Soler J, Gomez JM. Ultrasonographic thyroid volume as a reliable prognostic index of radioiodine-131 treatment outcome in Graves’ disease hyperthyroidism. Horm Metab Res. 2003;35:492–7.CrossRefPubMedGoogle Scholar
  24. 24.
    Haase A, Bahre M, Lauer I, Meller B, Richter E. Radioiodine therapy in Graves’ hyperthyroidism: determination of individual optimum target dose. Exp Clin Endocrinol Diabetes. 2000;108:133–7.CrossRefPubMedGoogle Scholar
  25. 25.
    Huysmans DA, Corstens FH, Kloppenborg PW. Long-term follow-up in toxic solitary nodules treated with radioactive iodine. J Nucl Med. 1991;32:27–30.PubMedGoogle Scholar
  26. 26.
    Walter MA, Christ-Crain M, Eckard B, Schindler C, Nitzsche EU, Muller-Brand J, Muller B. Radioiodine therapy in hyperthyroidism: inverse correlation of pretherapeutic iodine uptake level and post-therapeutic outcome. Eur J Clin Investig. 2004;34:365–70.CrossRefGoogle Scholar
  27. 27.
    Schiavo M, Bagnara MC, Camerieri L, Pomposelli E, Giusti M, Pesce G, Reitano C, Caputo M, Bagnasco M. Clinical efficacy of radioiodine therapy in multinodular toxic goiter, applying an implemented dose calculation algorithm. Endocrine. 2015;48:902–8.CrossRefPubMedGoogle Scholar
  28. 28.
    Regalbuto C, Marturano I, Condorelli A, Latina A, Pezzino V. Radiometabolic treatment of hyperthyroidism with a calculated dose of 131-iodine: results of one-year follow-up. J Endocrinol Investig. 2009;32:134–8.CrossRefGoogle Scholar
  29. 29.
    Zingrillo M, Urbano N, Suriano V, Modoni S. Radioiodine treatment of Plummer and multinodular toxic and nontoxic goiter disease by the first approximation dosimetry method. Cancer Biother Radiopharm. 2007;22:256–60.CrossRefPubMedGoogle Scholar
  30. 30.
    Tarantini B, Ciuoli C, Di Cairano G, Guarino E, Mazzucato P, Montanaro A, Burroni L, Vattimo AG, Pacini F. Effectiveness of radioiodine (131-I) as definitive therapy in patients with autoimmune and non-autoimmune hyperthyroidism. J Endocrinol Investig. 2006;29:594–8.CrossRefGoogle Scholar
  31. 31.
    Mariotti S, Martino E, Francesconi M, Ceccarelli C, Grasso L, Lippi F, Baschieri L, Pinchera A. Serum thyroid autoantibodies as a risk factor for development of hypothyroidism after radioactive iodine therapy for single thyroid “hot” nodule. Acta Endocrinol. 1986;113:500–7.PubMedGoogle Scholar
  32. 32.
    Erdogan MF, Kucuk NO, Anil C, Aras S, Ozer D, Aras G, Kamel N. Effect of radioiodine therapy on thyroid nodule size and function in patients with toxic adenomas. Nucl Med Commun. 2004;25:1083–7.CrossRefPubMedGoogle Scholar
  33. 33.
    Ratcliffe G, Cooke S, Fogelman I, Maisey M. Radioiodine treatment of solitary functioning thyroid nodules. Br J Radiol. 1986;59:385–7.CrossRefPubMedGoogle Scholar
  34. 34.
    Nygaard B, Hegedus L, Gerhard Nielsen K, Ulriksen P, Hansen JM. Long-term effect of radioactive iodine on thyroid function and size in patients with solitary autonomously functioning toxic thyroid nodules. Clin Endocrinol. 1999;50:197–202.CrossRefGoogle Scholar
  35. 35.
    Jarlov AE, Hegedus L, Kristensen LO, Nygaard B, Hansen JM. Is calculation of the dose in radioiodine therapy of hyperthyroidism worthwhile? Clin Endocrinol. 1995;43:325–9.CrossRefGoogle Scholar
  36. 36.
    Ustun F, Yuksel M, Durmus-Altun G, Kaya M, Cermik TF, Sarikaya A, Berkarda S. The incidence of recurrence and hypothyroidism after radioiodine treatment in patients with hyperthyroidism in Trakya, a mild iodine deficiency area, during the period 1991–2003. Ann Nucl Med. 2005;19:737–42.CrossRefPubMedGoogle Scholar
  37. 37.
    Kok SW, Smit JW, De Craen AJM, Goslings BM, Van Eck-Smit BLF, Romijin JA. Clinical outcome after standardized versus dosimetric radioiodine treatment of hyperthyroidism: an equivalence study. Nucl Med Commun. 2000;21:1071–8.CrossRefPubMedGoogle Scholar
  38. 38.
    Schiavo M, Bagnara MC, Pomposelli E, Altrinetti V, Calamaia I, Camerieri L, Giusti M, Pesce G, Reitano C, Bagnasco M, Caputo M. Radioiodine therapy of hyperfunctioning thyroid nodules: usefulness of an implemented dose calculation algorithm allowing reduction of radioiodine amount. Q J Nucl Med Mol Imaging. 2013;57(3):301–7.PubMedGoogle Scholar
  39. 39.
    Matheoud R, Canzi C, Reschini E, Zito F, Voltini F, Gerundini P. Tissue-specific dosimetry for radioiodine therapy of the autonomous thyroid nodule. Med Phys. 2003;30:791–8.CrossRefPubMedGoogle Scholar
  40. 40.
    Amato E, Campennì A, Leotta S, Ruggeri RM, Baldari S. Treatment of hyperthyroidism with radioiodine targeted activity: a comparison between two dosimetric method. Phys Med. 2016;32:847–53.CrossRefPubMedGoogle Scholar
  41. 41.
    Skanjeti A, Miranti A, Delgado Yabar GM, Bianciotto D, Tevisiol E, Stasi M, Podio V. A simple and accurate dosimetry protocol to estimate activity for hyperthyroidism treatment. Nucl Med Rev. 2015;18:13–8.Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Health Physics and Nuclear Medicine UnitsFondazione IRCCS Ca’ Granda Ospedale Maggiore PoliclinicoMilanItaly
  2. 2.Health Physics UnitAzienda Ospedaliero-Universitaria PisanaPisaItaly

Personalised recommendations