Dosimetry for 131I mIBG Therapy

  • Carlo Chiesa
  • Glenn Flux


In 131I-mIBG of paediatric neuroblastoma, the first dosimetric method introduced was whole-body dosimetry by Lashford et al. (J Clin Oncol 10(12):1889–96, 1992). This aims to prevent haematological toxicity. Despite its simplicity and level of approximation, this method is the basis for a forthcoming European multicentre trial, in which the activity of a second administration is planned according to the whole-body absorbed dose delivered in the first. Lesion dosimetry has also been performed, though in a small number of centres. The limited number of lesion dosimetry studies derives from the challenge of high activity quantitative imaging of I-131, incurring gamma camera saturation in peri-therapy imaging, and the need for children to remain steady during sequential camera scans. The major goal now is to establish absorbed dose-effect correlation studies, which will provide a fundamental basis for individualised treatment planning. Thanks to the improvement of methods for internal dosimetry and radiobiology over the last two decades and the increasing availability of quantitative 124I PET imaging, in the near future, we could have a more systematic basis for standardisation and individualisation of mIBG therapy.


mIBG Dosimetry 


  1. 1.
    Castellani MR, Seghezzi S, Chiesa C, Aliberti GL, Maccauro M, Seregni E, et al. 131I-MIBG treatment of pheochromocytoma: low versus intermediate activity regimens of therapy. Q J Nucl Med Mol Imaging. 2010;54(1):100–13.PubMedGoogle Scholar
  2. 2.
    Sisson JC, Hutchinson RJ, Carey JE, Shapiro B, Johnson JW, Mallette SA, Wieland DM. Toxicity from treatment of neuro-blastoma with 131I-meta-Iodobenzylguanidine. Eur J Nucl Med. 1988;14(7-8):337–40.PubMedGoogle Scholar
  3. 3.
    Fielding SL, FLower MA, Ackery D, Kemshead JT, Lashford LS, Lewis I. Dosimetry of iodine 131 metaiodobenzylguanidine for treatment of resistant neuroblastoma: results of a UK study. Eur J Nucl Med. 1991;18:308–16.CrossRefPubMedGoogle Scholar
  4. 4.
    Monsieurs M, Brans B, Bacher K, Dierckx R, Thierens H. Patient dosimetry for I-131-MIBG therapy for neuroendocrine tumours based on I-123-MIBG scans. Eur J Nucl Med Mol Imaging. 2002;29(12):1581–7.CrossRefPubMedGoogle Scholar
  5. 5.
    Flux GD, Guy MJ, Beddows R, Pryor M, Flower MA. Estimation and implications of random errors in whole-body dosimetry for targeted radionuclide therapy. Phys Med Biol. 2002;47(17):3211–23.CrossRefPubMedGoogle Scholar
  6. 6.
    Buckley SE, Chittenden SC, Saran FH, Meller ST, Flux GD. Whole-body dosimetry for individualized treatment planning of 131I-mIBG radionuclide therapy for neuroblastoma. J Nucl Med. 2009;50(9):1518–24.CrossRefPubMedGoogle Scholar
  7. 7.
    Chittenden S, Pratt B, Pomeroy K, Black P, Long C, Smith N, Buckley SE, Saran F, Flux GD. Optimization of equipment and methodology for whole-body activity retention measurements in children undergoing targeted radionuclide therapy. Cancer Biother Radiopharm. 2007;22(2):247–53.CrossRefGoogle Scholar
  8. 8.
    Dewaraja YK, Ljungberg M, Green AJ, Zanzonico PB, Frey EC, SNMMI MIRD Committee, Bolch WE, Brill AB, Dunphy M, Fisher DR, Howell RW, Meredith RF, Sgouros G, Wessels BW. MIRD pamphlet no. 24: guidelines for quantitative 131I SPECT in dosimetry applications. J Nucl Med. 2013;54(12):2182–8.CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Gaze MN, Chang YC, Flux GD, Mairs RJ, Saran FH, Meller ST. Feasibility of dosimetry-based high-dose131i-meta-Iodobenzylguanidine with topotecan as a radiosensitizer in children with metastatic neuroblastoma. Cancer Biother Radiopharm. 2005;20(2):195–9.CrossRefPubMedGoogle Scholar
  10. 10.
    Matthay KK, DeSantes K, Hasegawa B, Huberty J, Hattner RS, Ablin A, et al. Phase I dose escalation of 131I-metaiodobenzylguanidine with autologous bone marrow support in refractory neuroblastoma. J Clin Oncol. 1998;16(1):229–36.CrossRefPubMedGoogle Scholar
  11. 11.
    Matthay KK, Panina C, Huberty J, Price D, Glidden DV, Tang HR, et al. Correlation of tumor and whole-body dosimetry with tumor response and toxicity in refractory neuroblastoma treated with (131)I-MIBG. J Nucl Med. 2001;42(11):1713–21.PubMedGoogle Scholar
  12. 12.
    Hartung-Knemeyer V, Rosenbaum-Krumme S, Buchbender C, Poppel T, Brandau W, Jentzen W, et al. Malignant pheochromocytoma imaging with [124I]mIBG PET/MR. J Clin Endocrinol Metab. 2012;97(11):3833–4.CrossRefPubMedGoogle Scholar
  13. 13.
    Ott RJ, Tait D, Flower MA, Babich JW, Lambrecht RM. Treatment planning for 131I mIBG radiotherapy of neural crest tumors using 124I-mIBG positron emission tomography. Br J Radiol. 1992;65:787–91.CrossRefPubMedGoogle Scholar
  14. 14.
    Hindorf C, Glatting G, Chiesa C, Lindèn O, Flux G. EANM dosimetry committee guidelines for bone marrow and whole-body dosimetry. Eur J Nucl Med Mol Imaging. 2010;37(6):1238–5.CrossRefPubMedGoogle Scholar
  15. 15.
    Chiesa C, Castellani R, Mira M, Lorenzoni A, Flux GD. Dosimetry in 131I-MIBG therapy: moving toward personalized medice. Q J Nucl Med Mol Imaging. 2013;57:161–70.PubMedGoogle Scholar
  16. 16.
    Lashford LS, Lewis IJ, Fielding SL, Flower MA, Meller S, Kemshead JT, Ackery D. Phase I/II study of iodine 131 metaiodobenzylguanidine in chemoresistant neuroblastoma: a United Kingdom Children’s Cancer Study Group investigation. J Clin Oncol. 1992;10(12):1889–96.CrossRefPubMedGoogle Scholar
  17. 17.
    Koral KF, Huberty JP, Frame B, Matthay KK, Maris JM, Regan D, et al. Hepatic absorbed radiation dosimetry during 131I metaiodobenzylguanidine (MIBG) therapy for refractory neuroblastoma. Eur J Nucl Med Mol Imaging. 2008;35:2105–12.CrossRefPubMedGoogle Scholar
  18. 18.
    Flux GD, Chittenden SJ, Saran F, Gaze MN. Clinical applications of dosimetry for mIBG therapy. Q J Nucl Med Mol Imaging. 2011;55:116–25.PubMedGoogle Scholar
  19. 19.
    Tristam M, Alaamer AS, Fleming JS, Lewington VJ, Zivanovic MA. Iodine-131-metaiodobenzylguanidine dosimetry in cancer therapy: risk versus benefit. J Nucl Med. 1996;37(6):1058–63.PubMedGoogle Scholar
  20. 20.
    Sudbrock F, Schmidt M, Simon T, Eschner W, Berthold F, Schica H. Dosimetry for 131I mIBG therapies in metastatic neuroblastoma, phaeochromocytoma and paraganglioma. Eur J Nucl Med Mol Imaging. 2010;37:1279–90.Google Scholar
  21. 21.
    Delpon G, Ferrer L, Lisbona A, Bardies M. Correction of count losses due to deadtime on a DST-XLi (SMVi-GE) camera during dosimetric studies in patients injected with iodine-131. Phys Med Biol. 2002;47:N79–90.CrossRefPubMedGoogle Scholar
  22. 22.
    Chiesa C, Negri A, Albertini C, Azzeroni R, Setti E, Mainardi L, Aliberti G, Seregni E, Bombardieri E. A practical dead time correction method in planar activity quantification for dosimetry during radionuclide therapy. Q J Nucl Med Mol Imaging. 2009;53(6):658–70.PubMedGoogle Scholar
  23. 23.
    Buckley SE, Saran FH, Gaze MN, Chittenden S, Partridge M, Lancaster D, Pearson A, Flux GD. Dosimetry for fractionated 131I-mIBG therapies in patients with primary resistant high-risk neuroblastoma: preliminary results. Cancer Biother Radiopharm. 2007;22(1):105–12.CrossRefPubMedGoogle Scholar
  24. 24.
    Huang S, Bolch WE, Lee C, Brocklin H, Pampaloni M, Hawkins R, Sznewajs A, DuBois S, Matthay K, Seo Y. Patient-specific dosimetry using pretherapy [124I]m-iodobenzylguanidine ([124I]mIBG) dynamic PET/CT imaging before [131I]mIBG targeted radionuclide therapy for neuroblastoma. Mol Imaging Biol. 2015;17:284–94.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Nuclear MedicineFondazione IRCCS Istituto Nazionale TumoriMilanItaly
  2. 2.Joint Department of PhysicsRoyal Marsden Hospital and Institute of Cancer ResearchSuttonUK

Personalised recommendations